The answer I believe is 3.340kj.
Answer:
Final molarity of iodide ion C(I-) = 0.0143M
Explanation:
n = (m(FeI(2)))/(M(FeI(2))
Molar mass of FeI(3) = 55.85+(127 x 2) = 309.85g/mol
So n = 0.981/309.85 = 0.0031 mol
V(solution) = 150mL = 0.15L
C(AgNO3) = 35mM = 0.035M = 0.035m/L
n(AgNO3) = C(AgNO3) x V(solution)
= 0.035 x 0.15 = 0.00525 mol
(AgNO3) + FeI(3) = AgI(3) + FeNO3
So, n(FeI(3)) excess = 0.00525 - 0.0031 = 0.00215mol
C(I-) = C(FeI(3)) = [n(FeI(3)) excess]/ [V(solution)] = 0.00215/0.15 = 0.0143mol/L or 0.0143M
Answer: D, hydrolysis
Hydrolysis is any chemical reaction in which a molecule of water ruptures one or more chemical bonds. The term is used broadly for substitution, elimination, and fragmentation reactions in which water is the nucleophile.
According to law of definite proportion, for a compound, elements always combine in fixed ratio by mass.
The formula of compound remains the same, let it be a_{x}b_{y} where, a and b are two different elements.
Since, the ratio of mass remains the same , calculate the ratio of masses of element a and b in both cases
\frac{a}{b}=\frac{15}{35}=\frac{10}{y}
rearranging,
y=\frac{10\times 35}{15}=23.3
Thus, mass of b produced will be 23.3 g.