1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
frozen [14]
3 years ago
10

Difference between star and delta connection​

Engineering
2 answers:
Anuta_ua [19.1K]3 years ago
7 0

Answer:

Star connection, the line voltage is equal to root three times of the phase voltage, whereby delta connection line voltage is equal to the phase voltage.

plz Mark me as brainliest

Irina18 [472]3 years ago
5 0

<em>In Star connection, the line voltage is equal to root three times of the phase voltage, whereas in delta connection line voltage is equal to the phase voltage. ... In star connection, phase voltage is low as 1/√3 times the line voltage, whereas in delta connection phase voltage is equal to the line voltage.</em>

You might be interested in
At an impaired driver checkpoint, the time required to conduct the impairment test varies (according to an exponential distribut
professor190 [17]

Answer:

Option (d) 2 min/veh

Explanation:

Data provided in the question:

Average time required = 60 seconds

Therefore,

The maximum capacity that can be accommodated on the system, μ = 60 veh/hr

Average Arrival rate, λ = 30 vehicles per hour

Now,

The average time spent by the vehicle is given as

⇒ \frac{1}{\mu(1-\frac{\lambda}{\mu})}

thus,

on substituting the respective values, we get

Average time spent by the vehicle = \frac{1}{60(1-\frac{30}{60})}

or

Average time spent by the vehicle = \frac{1}{60(1-0.5)}

or

Average time spent by the vehicle = \frac{1}{60(0.5)}

or

Average time spent by the vehicle = \frac{1}{30} hr/veh

or

Average time spent by the vehicle = \frac{1}{30}\times60 min/veh

[ 1 hour = 60 minutes]

thus,

Average time spent by the vehicle = 2 min/veh

Hence,

Option (d) 2 min/veh

7 0
3 years ago
5. Which of the following is false about onStep?
katovenus [111]

The false statement about onStep is: B. The default number of steps per second is 30.

<h3>What is an onStep?</h3>

An onStep can be defined as a computerized telescope goto controller that is designed and developed to <u>animate shapes</u> while using it on a variety of mounting systems such as forks.

<h3>The characteristics of an onStep.</h3>

In Engineering, some of the characteristics that are associated with an onStep include the following:

  • The onStep function can be called without user input.
  • It can be used to animate shapes without user input.
  • It only runs a certain number of times.

In conclusion, the default number of steps per second for onStep isn't 30.

Read more on onStep here: brainly.com/question/25619349

7 0
2 years ago
Which of the following has special properties that allow forces and pressure to be distributed evenly?
Thepotemich [5.8K]

Answer:

Fluids

Explanation:

Fluids has special properties that allow forces and pressure to be distributed evenly within them.

  • Fluids are gases and liquids whose intermolecular forces of attraction are generally weak or non-existence.
  • Therefore, when pressure is applied to them, it permeates evenly on all parts.
  • Their ability to tend to randomness makes liquids and gases very viable for distributing pressure.
7 0
3 years ago
Which sentence is correct about the exergy of an empty (pressure around zero Pascal) tank with a volume of V, located in an envi
sineoko [7]

Answer:

The correct option is;

c.  the exergy of the tank can be anything between zero to P₀·V

Explanation:

The given parameters are;

The volume of the tank = V

The pressure in the tank = 0 Pascal

The pressure of the surrounding = P₀

The temperature of the surrounding = T₀

Exergy is a measure of the amount of a given energy which a system posses that is extractable to provide useful work. It is possible work that brings about equilibrium. It is the potential the system has to bring about change

The exergy balance equation  is given as follows;

X_2 - X_1 = \int\limits^2_1 {} \, \delta Q \left (1 - \dfrac{T_0}{T} \right ) - [W - P_0 \cdot (V_2 - V_1)]- X_{destroyed}

Where;

X₂ - X₁ is the difference between the two exergies

Therefore, the exergy of the system with regards to the environment is the work received from the environment which at is equal to done on the system by the surrounding which by equilibrium for an empty tank with 0 pressure is equal to the product of the pressure of the surrounding and the volume of the empty tank or P₀ × V less the work, exergy destroyed, while taking into consideration the change in heat of the system

Therefore, the exergy of the tank can be anything between zero to P₀·V.

6 0
3 years ago
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
Other questions:
  • What material resources and intellectual resources were used in self driving cars?
    15·1 answer
  • A Geostationary satellite has an 8kW RF transmission pointed at the earth. How much force does that induce on the spacecraft? (N
    15·1 answer
  • In the fluid-flow analogy for electrical circuits, what is analogous to a conductor?
    6·1 answer
  • A car generator turns at 400 rpm (revolutions per minute) when the engine is idling. It has a rectangular coil with 300 turns of
    7·1 answer
  • When you do a vehicle check, what do you NOT need to keep an eye on?
    9·1 answer
  • Which component found in fertilizer is a known cancer-causing agent?
    11·2 answers
  • Air enters a compressor operating at steady state at 1.05 bar, 300 K, with a volumetric flow rate of 21 m3/min and exits at 12 b
    11·1 answer
  • Welding and cutting done in confined spaces must
    5·2 answers
  • 3. A steel pipe of outside diameter 20 mm and thickness 3 mm is
    14·1 answer
  • Me ayudas plis noce ​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!