Answer:
Explanation:
The gas ideal law is
PV= nRT (equation 1)
Where:
P = pressure
R = gas constant
T = temperature
n= moles of substance
V = volume
Working with equation 1 we can get

The number of moles is mass (m) / molecular weight (mw). Replacing this value in the equation we get.
or
(equation 2)
The cylindrical container has a constant pressure p
The volume is the volume of a cylinder this is

Where:
r = radius
h = height
(pi) = number pi (3.1415)
This cylinder has a radius, r and height, h so the volume is 
Since the temperatures has linear distribution, we can say that the temperature in the cylinder is the average between the temperature in the top and in the bottom of the cylinder. This is:
Replacing these values in the equation 2 we get:
(equation 2)
I believe the answer is c
What is it you need help on? there is nothing here????
ANSWER:
Answer:
The two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place
Explanation:
A complex is made up a central metal atom or ion and ligands. Ligands are lewis bases and they possess lone pairs of electrons. A complex is formed when electrons are donated from ligand species to metals.
However, if the ligand has a negative charge at a particular location and we try to put electrons from the metal near the electrons from the ligand, the two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place.