During action potential, positively charged sodium ions move inside the cell.
So option D is correct one.
The sodium ion moves inside the cell during a action potential. The stage of action potential is called depolarization . This open voltage gated sodium channel.
Action potentials ( those electrical impulse that send signals around body ) is nothing but more than temporary shift ( from negative to positive ) in the neuron's membrane potential caused by ions suddenly flowing in and out of the neuron.
It consists of phases:
- Depolarization
- overshoot
- repolarization
An active potential propagates along the cell membrane of an axon until it reaches the terminal button.
to known more about action potential
brainly.com/question/27095019
#SPJ4
Here is the link to the answer:
1)Delta H=(Delta H of reactants)-(Delta H of products)
2)And we know CO have 3 bond CO and CO2 have 2 bond that each of them are 2 bond, please see the picture!
so lets answer it:

Some examples of physical changes are:
Breaking a glass
Chopping wood
Tearing paper
Mixing sand and water
Melting an ice cube
These all are physical changes because the composition of the matter does not change.
Answer:- 544.5 mL of water need to be added.
Solution:- It is a dilution problem. The equation used for solving this type of problems is:

where,
is initial molarity and
is the molarity after dilution. Similarly,
is the volume before dilution and
is the volume after dilution.
Let's plug in the values in the equation:



Volume of water added = 907.5mL - 363mL = 544.5 mL
So, 544.5 mL of water are need to be added to the original solution for dilution.