1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rzqust [24]
3 years ago
11

An Olympic diver is on a diving platform 3.80 m above the water. To start her dive, she runs off of the platform with a speed of

1.24 m/s in the horizontal direction. What is the diver's speed just before she enters the water
Physics
1 answer:
AVprozaik [17]3 years ago
3 0

Answer:

the diver's speed just before she enters the water is 8.718 m/s.

Explanation:

Given;

height of the diving platform, h = 3.8 m

initial velocity of the diver, u = 1.24 m/s

the diver's speed just before she enters the water is her final velocity, = v

Apply the following kinematic equation to determine the final velocity of the girl;

v² = u² + 2gh

v² = (1.24)² + 2(9.8 x 3.8)

v² = 76.018

v = √76.018

v = 8.718 m/s

Therefore, the diver's speed just before she enters the water is 8.718 m/s.

You might be interested in
What do you wish you had learned is Digital Citizenship class?
nydimaria [60]

Answer:

I wish I learned what I could do in the real world with the information I learned

Explanation:

7 0
2 years ago
How many significant digits are in the following measurements?<br> a. 1300 m
Fofino [41]

Answer:

For example, 1300 with a bar placed over the first 0 would have three significant figures (with the bar indicating that the number is precise to the nearest ten).

Explanation:

hope it helps :)

5 0
2 years ago
If two swimmers compete in a race, does the faster swimmer develop more power?
valkas [14]
Power is equal to energy per unit time. In this case, power is proportional to energy while is inversely proportional to time,on the other hand. Given the two swimmers exerts same amount of energy but the faster swimmer just does things in faster time, then the faster swimmer should develop more power from shorter time
7 0
3 years ago
Part b suppose the magnitude of the gravitational force between two spherical objects is 2000 n when they are 100 km apart. what
kobusy [5.1K]
<span>b) The force with a distance of 150 km is 889 N c) The force with a distance of 50 km is 8000 N This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question. Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as F = (G M1 M2)/r^2 where F = Force G = gravitational constant M1 = Mass 1 M2 = Mass 2 r = distance between center of masses for the two masses. So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889. Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits. If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>
8 0
3 years ago
Read 2 more answers
A 210 g block is dropped onto a relaxed vertical spring that has a spring constant of k = 2.0 N/cm. The block becomes attached t
Yuliya22 [10]

Answer:

a) W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

b) W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

c) V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

d)  d_1 =0.183m or 18.3 cm

Explanation:

For this case we have the following system with the forces on the figure attached.

We know that the spring compresses a total distance of x=0.10 m

Part a

The gravitational force is defined as mg so on this case the work donde by the gravity is:

W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J

Part b

For this case first we can convert the spring constant to N/m like this:

2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}

And the work donde by the spring on this case is given by:

W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J

Part c

We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i

And if we solve for the initial velocity we got:

V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s

Part d

Let d1 represent the new maximum distance, in order to find it we know that :

-1/2mV^2_i = W_g + W_{spring}

And replacing we got:

-1/2mV^2_i =mg d_1 -1/2 k d^2_1

And we can put the terms like this:

\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0

If we multiply all the equation by 2 we got:

k d^2_1 -2 mg d_1 -m V^2_i =0

Now we can replace the values and we got:

200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0

200 d^2_1 -2.058 d_1 -6.3525=0

And solving the quadratic equation we got that the solution for d_1 =0.183m or 18.3 cm because the negative solution not make sense.

5 0
2 years ago
Other questions:
  • Newton's cradle consists of an aligned row of identical elastic balls suspended by strings so they barely touch one another. whe
    10·1 answer
  • the gravitational force that earth exerts on the moon equals 2.03 x 10^20N. The moons mass is 7.35 x 10^22kg. What is the accele
    11·1 answer
  • Compare and contrast four types <br> of friction
    9·1 answer
  • Which of the following best describes the circuit shown below?
    12·2 answers
  • When a capacitor, battery, and resistor are connected in series, does the resistor affect the maximum charge stored on the capac
    11·1 answer
  • How do you know that waves sent from the sun to earth are not mechanical waves? Explain
    13·1 answer
  • What causes a submarine to rise and descend?
    11·1 answer
  • A 0.5 kg object is whirled on the end of a string that is 1.2 m long at a speed of 7.5 m/s. Calculate the angular momentum of th
    10·1 answer
  • Identification of elements compounds and mixtures from a given table​
    6·1 answer
  • A ball experiences forces of 14 N [N] and 9.2 N [W]. A Free Body diagram is required. What is the acceleration of the ball if it
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!