1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
3 years ago
8

Part b suppose the magnitude of the gravitational force between two spherical objects is 2000 n when they are 100 km apart. what

is the magnitude of the gravitational force fg between the objects if the distance between them is 150 km ? express your answer in newtons to three significant figures. hints fg = 889 n submitmy answersgive up correct significant figures feedback: your answer 890 n was either rounded differently or used a different number of significant figures than required for this part. part c what is the gravitational force fg between the two objects described in part b if the distance between them is only 50 km ?
Physics
2 answers:
kobusy [5.1K]3 years ago
8 0
<span>b) The force with a distance of 150 km is 889 N c) The force with a distance of 50 km is 8000 N This question looks like a mixture of a question and a critique of a previous answer. I'll attempt to address the original question. Since the radius of the spherical objects isn't mentioned anywhere, I will assume that the distance from the center of each spherical object is what's being given. The gravitational force between two masses is given as F = (G M1 M2)/r^2 where F = Force G = gravitational constant M1 = Mass 1 M2 = Mass 2 r = distance between center of masses for the two masses. So with a r value of 100 km, we have a force of 2000 Newtons. If we change the distance to 150 km, that increases the distance by a factor of 1.5 and since the force varies with the inverse square, we get the original force divided by 2.25. And 2000 / 2.25 = 888.88888.... when rounded to 3 digits gives us 889. Looking at what looks like an answer of 890 in the question is explainable as someone rounding incorrectly to 2 significant digits. If the distance is changed to 50 km from the original 100 km, then you have half the distance (50/100 = 0.5) and the squaring will give you a new divisor of 0.25, and 2000 / 0.25 = 8000. So the force increases to 8000 Newtons.</span>
rusak2 [61]3 years ago
7 0

(b). The gravitational force between the objects when they are 150 km apart is \boxed{889\,{\text{N}}}.

(c). The gravitational force between the objects when they are 50 km apart is \boxed{8000\,{\text{N}}} .

Further Explanation:

The gravitational force of attraction between the two bodies is given by the Newton’s Law of Gravitation. According to Newton’s law of Gravitation, the gravitational force between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance between them.

The gravitational force is expressed mathematically as:

F = \dfrac{{G{m_1}{m_2}}}{{{r^2}}}

Here, G is the gravitational constant, {m_1} is the mass of first body, {m_2} is the mass of second body and r is the distance between two bodies.

For two bodies kept at a distance of 100 Km , the gravitational force of attraction is 2000 N.

Substitute 200 N for F and 100 Km for r in above equation.

\begin{aligned}2000=\frac{{G{m_1}{m_2}}}{{{{\left( {100\times {{10}^3}}\right)}^2}}}\hfill\\G{m_1}{m_2} = 2\times {10^{13}}\hfill\\\end{aligned}

<u>Part (b):</u>

Now, the force experienced by the bodies when they are 150 Km apart is:

F = \dfrac{{G{m_1}{m_2}}}{{\left( {150 \times {{10}^3}}\right)}}

Substitute 2 \times{10^8} for G{m_1}{m_2} in above equation.

\begin{aligned}F&=\frac{{2 \times {{10}^{13}}}}{{{{\left( {150 \times {{10}^3}}\right)}^2}}}\\&= 888.9\,{\text{N}}\\&\approx {\text{889}}\,{\text{N}}\\\end{aligned}

Thus, the gravitational force between the objects when they are 150 Km  apart is \boxed{889\,{\text{N}}}.

<u>Part (c): </u>

Now, the force experienced by the bodies when they are 50 km apart is:

F =\Dfrac{{G{m_1}{m_2}}}{{\left( {50 \times {{10}^3}}\right)}}

Substitute 2 \times {10^8} for G{m_1}{m_2} in above equation.

\begin{aligned}F &=\frac{{2 \times {{10}^{13}}}}{{{{\left({50 \times {{10}^3}}\right)}^2}}}\\&= 8000\,{\text{N}}\\\end{aligned}

Thus, the gravitational force between the objects when they are 50 Km  apart is  \boxed{8000\,{\text{N}}}.

Learn More:

1. Calculate the total force on the earth due to Venus, Jupiter, and Saturn brainly.com/question/2887352

2.Compare the surface area–to–volume ratios of Earth and Venus brainly.com/question/7227193

3.A rocket being thrust upward as the force of the fuel being burned brainly.com/question/11411375

Answer Details:

Grade: College

Subject: Physics

Chapter: Newton’s law of Gravitation

Keywords:  Gravitation, newton’s law, force of attraction, 2000N, 100km, 150 km, 50 km, gravitational force, two spherical objects, 889 N, 8000 N.

You might be interested in
Preston tossed a red ball upward and it reaches a maximum height of 3.0. What is the final velocity when it returns to prestons
Leokris [45]
That will depend on the units of the 3.0. We need to know if it's 3 feet, 3 yards, 3 meters, or 3 miles. Each one will have a different answer.
5 0
3 years ago
Which object has more gravitational potential energy? Use PE = m × g × h, where g = 9.8 meters/second2.
Andrew [12]
Gravitational potential energy can be calculated using the formula <span>PE = m × g × h, where g is the gravitational acceleration and is constant hence the energy is dependent directly to mass and the height of the object. Hence more PE is registered when the object is heavier and/or at greater initial height. </span>
6 0
3 years ago
Read 2 more answers
How are lasers used to determine the distance from earth to the moon?
mezya [45]
A beam of laser is directed at a reflecting surface put on the moon when the beam of laser is reflected a receiver on the each measure the time since the beam was sent till it was received. Laser is simply light so it has constant velocity in vacuum ~ air  (c = 3 x 10^8 m/s)

to find the distance:

t : time measured between launching the beam and receiving it 

d : distance

d = ct 

5 0
3 years ago
Read 2 more answers
Please help with 4 and 5, thank you :)
allochka39001 [22]

Answer: #4

Sally is faster.

Explanation:

If you multiply Sallies it is going to be less than Jessica's.

6 0
3 years ago
What was the effect of the Supreme Court case McCulloch v. Maryland?
AURORKA [14]
The effect was the decision that gave congress power under the necessary and proper clause act.  States could also not impede on the valid constitutional excerpts powered by the Federal Government. 
8 0
3 years ago
Read 2 more answers
Other questions:
  • Ahmed kept a balloon from his birthday for several days until it began to deflate and slowly sink to the ground. He wondered how
    9·2 answers
  • The atomic mass of an atom can be found by
    13·1 answer
  • A cup of tea at 60°C is sitting on a table in a room whose temperature is 24°C. Choose the best statement concerning heat flow.
    9·2 answers
  • The force exerted by gravity on 5kg=~ n
    13·1 answer
  • During science class while studying mixtures you mix together iron fillings and sand. You're a teacher challenges you to separat
    5·1 answer
  • What is the torque in ( lbs-ft ) of a man pushing on a wrench with 65 lbs of force 8 unches from the nut / bolt he is trying to
    9·1 answer
  • Which of following the smallest unit?(1) Electrons (2)Quarks (3)Neutrons (3)Protonus​
    11·1 answer
  • Can you answer this math homework? Please!
    6·1 answer
  • A box has a force of 9000 N pulling to the right and 7000 N pulling to the left, Determine the resultant forces on the box
    11·1 answer
  • What is the current in a circuit if the charge passing each point is 10current <br>in 2s​
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!