Answer:
1,780,000 N
Explanation:
0.2 atm × (1.013×10⁵ Pa/atm) = 20,260 Pa
Force = pressure × area
F = 20,260 Pa × (3.89 m × 22.6 m)
F = 1,780,000 N
Answer:
The unbalanced force that caused the ball to stop was friction
Explanation:
As Newton's second law states, the acceleration of an object is proportional to the net force applied on the object:

therefore, in order to move at constant speed, an object should have a net force of zero (balanced forces) acting on it.
In this case, the ball slows down and eventually comes to a stop: it means that the ball is decelerating, so there are unbalanced forces (net force different from zero) acting on it. The unbalanced force acting on the ball is the friction: friction is a force against the motion of the object, which is due to the contact between the surface of the ball and the surface of the street, and this force is responsible for slowing down the ball.
Answer:
iv) It is 9x bigger than before
Explanation:
As the amplitudes of the new speakers add directly with the original one, taking into account the phase that they have, the composed amplitude of the sound wave is as follows:
At = A + 4A -2A = 3 A
The intensity of the wave, assuming it propagates evenly in all directions, is constant at a given distance from the source, and can be expressed as follows:
I = P/A
where P= Power of the wave source, A= Area (for a point source, is equal to the surface area of a sphere of radius r, where is r is the distance to the source along a straight line)
For a sinusoidal wave, the power is proportional to the square of the amplitude, so the intensity is proportional to the square of the amplitude also.
If the amplitude changes increasing three times, the change in intensity will be proportional to the square of the change in amplitude, i.e., it will be 9 times bigger.
So, the statement iv) is the right one.
S= 343m/s
F=256Hz
WL= 343ms/256-1
WL=V/F
= 1.339844m
To contrast inner and outer planets we will start with the climate of the planets and then move on to there lighting. To start the planets closet to the sun, mercury, venus, earth and mars, are all hot compared to the further one, jupiter, saturn, uranus, neptune. This distance also makes the farthe away planets darker than the ones closer. Now to compare all the planets vary from either gass or solid, rocky or icy. All of them spin around the sun and all have objects spinning around them, moons.