Answer:
14.8m
Explanation:
Given parameters:
Initial speed = 17m/s
Unknown:
Maximum height = ?
Solution:
At the maximum height, the final speed will be 0m/s;
We use of the kinematics equation to solve this problem.
V² = U² - 2gH
V is the final velocity
U is the initial velocity
g is the acceleration due to gravity
H is the height
0² = 17² - (2 x 9.8 x h )
0 = 289 - (9.6h)
-289 = -19.6h
h = 14.8m
Answer:
applying 1st eq of motion vf=vi+at we have to find a=vf-vi/t here a=50-30/2=10 so we got a=10m/s²
Answer:
1: a measuring instruments the students should use for time is a stopwatch
2: a measuring instruments the students should use for distance is a measuring tape
Explanation:
pls mark brainliest
Answer:
<h2>0.67 m/s²</h2>
Explanation:
The acceleration of an object given it's mass and the force acting on it can be found by using the formula

f is the force
m is the mass
From the question we have

We have the final answer as
<h3>0.67 m/s²</h3>
Hope this helps you
The image of the object is 8cm to the left of the lens (D)
<h3>
</h3>
What is the image of an object?
The image of an object is said to be the location where light rays from that object intersect with a mirror by reflection.
It is calculated thus:
1÷v = 1÷f - 1÷u
<h3>How to calculate the image of an object</h3>
From the formula
1÷v = 1÷f - 1÷u
<h3>
Where </h3>
V = image distance fromthe object
U = object
f = focal length
Substitute the values
1÷v = 1÷8 - 1÷ 4
1÷v = - 1÷8
Make v the subject of formula
v = -8cm
Therefore, the image of the object is 8cm to the left of the lens (D)
Learn more on focal length here:
brainly.com/question/25779311
#SPJ1