Answer:
Yes
Explanation:
The spring force is given as:
F = kd
F is the spring force
K is the spring constant
d is the magnitude of the stretch
Since k is a constant, therefore, doubling the stretch distance will double the force.
Both stretch distance and force applied can be said to be directly proportional to one another.
Answer:
The rock will reach 9 m from the ground at eaxactly 5.06 s after it was initially thrown upwards.
Explanation:
We will use the equations of motion for this.
u = initial velocity of the rock = 22 m/s
g = acceleration due to gravity = -9.8 m/s²
y = vertical position of the rock at a time t = 9 m
y₀ = initial height of the rock = 25 m
t = time it takes for the rock to reach height of 9 m.
(y-y₀) = ut + 0.5gt²
(9 - 25) = 22t + 0.5(-9.8)t²
- 14 = 22t - 4.9t²
4.9t² - 22t - 14 = 0
solving this quadratic equation,
t = 5.055 s or - 0.565 s
Since time cannot be negative,
t = 5.055 s = 5.06 s
Hope this Helps!!!
Answer:
Speed of the ball relative to the boys: 25 km/h
Speed of the ball relative to a stationary observer: 35 km/h
Explanation:
The RV is travelling at a velocity of

Here we have taken the direction of motion of the RV as positive direction.
The boy sitting near the driver throws the ball back with speed of 25 km/h, so the velocity of the ball in the reference frame of the RV is

with negative sign since it is travelling in the opposite direction relative to the RV. Therefore, this is the velocity measured by every observer in the reference frame of the RV: so the speed measured by the boys is
v = 25 km/h
Instead, a stationary observer outside the RV measures a velocity of the ball given by the algebraic sum of the two velocities:
v = +60 km/h + (-25 km/h) = +35 km/h
So, he/she measures a speed of 35 km/h.