Answer:
<em>The force is now 9 times the original force</em>
Explanation:
<u>Coulomb's Law
</u>
The electrostatic force between two charged particles is directly proportional to the product of their charges and inversely proportional to the square of the distance between them.
Coulomb's formula is:

Where:

q1, q2 = the particles' charge
d= The distance between the particles
Suppose the distance is reduced to d'=d/3, the new force F' is:




The force is now 9 times the original force
consider the velocity of the ball towards the wall as negative and away from the wall as positive.
m = mass of the ball = 513 g = 0.513 kg
v₀ = initial velocity of the ball towards the wall before collision = - 14.7 m/s
v = final velocity of the ball away from the wall after collision = 11.3 m/s
t = time of contact with the wall = 0.038 sec
F = average force acting on the ball
using impulse-change in momentum equation , average force is given as
F = m (v - v₀)/t
inserting the values
F = (0.513) (11.3 - (- 14.7))/0.038
F = 351 N