We are asked to find the value of ΔG°rxn from the equilibrium concentrations of the reactants and products. We can use the following formula:
ΔG°rxn = -RTlnK
The value of R = 8.314 J/Kmol, T = 298.15 K and we are given the equilibrium constant Keq = 2.82.
The question provides equilibrium concentrations and then asks to find ΔG°rxn when more of a product is added to the reaction mixture. However, you are asked to find ΔG after the reaction has settled down and reached equilibrium once more. Therefore, we can simply use Keq = 2.82 still and solve for ΔG.
ΔG°rxn = -(8.314 J/Kmol)(298.15 K)(ln(2.82))
ΔG°rxn = -2570 J/mol
ΔG°rxn = -2.57 kJ/mol
Under equilibrium conditions at standard temperature and pressures, the value of ΔG°rxn = -2.57 kJ/mol.
3.16 X 10^-11 M is the [OH-] concentration when H3O+ = 1.40 *10^-4 M.
Explanation:
data given:
H30+= 1.40 X 10^-4 M\
Henderson Hasslebalch equation to calculate pH=
pH = -log10(H30+)
putting the values in the equation:
pH = -log 10(1.40 X 10^-4 M)
pH = 3.85
pH + pOH =14
pOH = 14 - 3.85
pOH = 10.15
The OH- concentration from the pOH by the equation:
pOH = -log10[OH-]
10.5= -log10[OH-]
[OH-] = 10^-10.5
[OH-] = 3.16 X 10^-11 is the concentration of OH ions when hydronium ion concentration is 1.40 *10^-4 M.
Answer:
Extensibility is a software engineering and systems design principle that provides for future growth.
Explanation:
hope ot helps good day
C. Aluminum (Al) oxidized, zinc (Zn) reduced
<h3>Further explanation</h3>
Given
Metals that undergo oxidation and reduction
Required
A galvanic cell
Solution
The condition for voltaic cells is that they can react spontaneously, indicated by a positive cell potential.

or:
E ° cell = E ° reduction-E ° oxidation
For the reaction to occur spontaneously (so that it E cell is positive), the E° anode must be less than the E°cathode
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Ag-Pt-Au </em>
The standard potential value(E°) from left to right in the voltaic series will be greater, so that the metal undergoing an oxidation reaction (acting as an anode) must be located to the left of the reduced metal (as a cathode)
<em />
From the available answer choices, oxidized Al (anode) and reduced Zn (cathode) are voltaic/galvanic cells.
Diagram of the nuclear composition, electron configuration, chemical data, and valence orbitals of an atom of neodymium-144 (atomic number: 60), an isotope of this element. The nucleus consists of 60 protons (red) and 84 neutrons (orange). 60 electrons (white) successively occupy available electron shells (rings).