Answer:
121.0 W
Explanation:
We use the equation for rate of heat transfer during radiation.
Q/t = σεA(T₂⁴ - T₁⁴)
Since temperature of surroundings = T₁ = -20.0°C = 273 +(-20) = 253 K, and temperature of skier's clothes = T₂ = 5.50°C = 273 + 5.50 = 278.5 K.
Surface area of skier , A = 1.60 m², emissivity of skier's clothes, ε = 0.70 and σ = 5.67 × 10⁻⁸ W/m²K⁴
.
Therefore, the rate of heat transfer by radiation Q/t is
Q/t = σεA(T₂⁴ - T₁⁴) = (5.67 × 10⁻⁸ W/m²K⁴
) × 0.70 × 1.60 m² × (278.5⁴ - 253⁴) = 6.3054 × (1918750544.0625) × 10⁻⁸ W = 1.2098 × 10² W = 120.98 W ≅ 121.0 W
Answer:
1000 N/C
Explanation:
Potential difference, V = 60 V
Distance between the plates, d = 6 cm = 0.06 m
The electric field between the plates is given by
E = V / d
E = 60 / 0.06 = 1000 N/C
Thus, the electric filed between the plates is 1000 N/C.
Answer:
The frequency heard by the motorist is 4313.2 Hz.
Explanation:
let f1 be the frequency emited by the police car and f2 be the frequency heard by the motorist, let v1 be the speed of the police car and v2 be the speed of the motorist and v = 343 m/s be the speed of sound.
because the police car is moving towards the motorist at a higher speed, then the motorist will hear a increasing frequency and according to Dopper effect, that frequency is given by:
f1 = [(v + v2/(v - v1))]×(f2)
= [( 343 + 30)/(343 - 36)]×(3550)
= 4313.2 Hz
Therefore, the frequency heard by the motorist is 4313.2 Hz.
The answer to the given question above would be a PUNNETT SQAURE. SO the name of the <span>special science tool that he can use to predict genetic outcome is a PUNNETT SQUARE. Hope this answers your question. Have a great day ahead. Let me know if you need more help next time.</span>
b) accelerate to the left as much more pressure is pulling it in that direction and on the right however , there is less force .