Answer:
2577 K
Explanation:
Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.
So, T = ⁴√(P/σεA)
Since P = 60 W, we substitute the vales of the variables into T. So,
T = ⁴√(P/σεA)
= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)
= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)
= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)
= ⁴√(0.00441 × 10¹⁶K⁴)
= 0.2577 × 10⁴ K
= 2577 K
Answer:
Work = power * time
time = 20000 joules / 1000 joules / sec = 20 sec
Answer: Glass may break at low temperatures, but this is because the contents freeze and their expansion cause the glass to crack (if the cap does not come off). ... Hot temperatures can cause the glass to break when the bottle is subject to excessive thermal variations. hope this helps can u give me brainliest
Explanation:
Answer:
The ratio is 9.95
Solution:
As per the question:
Amplitude,
Wavelength,
Now,
To calculate the ratio of the maximum particle speed to the speed of the wave:
For the maximum speed of the particle:
where
= angular speed of the particle
Thus
Now,
The wave speed is given by:
Now,
The ratio is given by: