The gravitational potential energy
gpe = mgh

Answer:
70 revolutions
Explanation:
We can start by the time it takes for the driver to come from 22.8m/s to full rest:

The tire angular velocity before stopping is:

Also its angular decceleration:

Using the following equation motion we can findout the angle it makes during the deceleration:

where
= 0 m/s is the final angular velocity of the car when it stops,
= 114rad/s is the initial angular velocity of the car
= 14.75 rad/s2 is the deceleration of the can, and
is the angular distance traveled, which we care looking for:

or 440/2π = 70 revelutions
Answer:
a= 0.5m/s^2
Explanation:
Force applied on an object is known as
F=m.a (Newton's second law states it)
a=F/m
a=5/10=0.5m/s^2
The answer is true. I hope that this helps you out!!
Time taken by the bowling ball to reach its highest point= 0.214 s
initial velocity= Vi=2.1 m/s
Final velocity= Vf=0 as the velocity at the highest point is zero.
acceleration= g= -9.8 m/s²
using the kinematic equation Vf= Vi + at
0= 2.1 + (-9.8)t
t= -2.1/-9.8
t=0.214 s
Thus the time taken by the bowling ball to reach its highest point is 0.214 s