Answer:
a) 
b) 
Explanation:
From the question we are told that:
Cast-iron block Dimension:
Length
Width 
Feed
Depth 
Diameter 
Number of cutting teeth 
Rotation speed 
Generally the equation for Approach is mathematically given by



Therefore
Effective length is given as



a)
Generally the equation for Machine Time is mathematically given by

Where



Therefore


b)
Generally the equation for Material Removal Rate. is mathematically given by



Like the price to manufacture?
Answer:
c = 18.0569 mm
Explanation:
Strategy
We will find required diameter based on angle of twist and based on shearing stress. The larger value will govern.
Given Data
Applied Torque
T = 750 N.m
Length of shaft
L = 1.2 m
Modulus of Rigidity
G = 77.2 GPa
Allowable Stress
г = 90 MPa
Maximum Angle of twist
∅=4°
∅=4*
/180
∅=69.813 *10^-3 rad
Required Diameter based on angle of twist
∅=TL/GJ
∅=TL/G*
/2*c^4
∅=2TL/G*
*c^4
c=
∅
c=18.0869 *10^-3 rad
Required Diameter based on shearing stress
г = T/J*c
г = [T/(J*
/2*c^4)]*c
г =[2T/(J*
*c^4)]*c
c=17.441*10^-3 rad
Minimum Radius Required
We will use larger of the two values
c= 18.0569 x 10^-3 m
c = 18.0569 mm
ANSWERS:

Explanation:
Given:
Piston cylinder assembly which mean that the process is constant pressure process P=C.
<u>AMMONIA </u>
state(1)
saturated vapor 
The temperature 
Isothermal process 
a)
( double)
b)
(reduced by half)
To find the final state by giving the quality in lbf/in we assume the friction is neglected and the system is in equilibrium.
state(1)
using PVT data for saturated ammonia

then the state exists in the supper heated region.
a) from standard data



assume linear interpolation


b)

from standard data

then the state exist in the wet zone


<u>Solution and Explanation:</u>
Volume of gas stream = 1000 cfm (Cubic Feet per Minute)
Particulate loading = 400 gr/ft3 (Grain/cubic feet)
1 gr/ft3 = 0.00220462 lb/ft3
Total weight of particulate matter = 
Cyclone is to 80 % efficient
So particulate remaining = 
emissions from this stack be limited to = 10.0 lb/hr
Particles to be remaining after wet scrubber = 10.0 lb/hr
So particles to be removed = 685.7136- 10 = 675.7136
Efficiency = output multiply with 100/input = 98.542 %