Answer:
Explanation:
The deatailed diagram of VCRS is given below such
1-2=Isentropic compression in which temperature increases at constant entropy
2-3=Isobaric heat rejection i.e. heat rejected at constant pressure(condensation)
3-4=Irreversible expansion or throttling in which enthalpy remains constant
4-1=Isobaric heat addition(Evaporation)
Answer:
The distance between the centers of adjacent atoms for the FCC crystal structure along the [100] is 2R√2
Explanation:
From the image uploaded, a Face centered cubic structure (100) plane, there is one atom at each of the four cube corners, each of which is shared with four adjacent unit cells, while the center atom lies entirely within the unit cell.
In terms of the atomic radius, R, we determine the distance between the centers of adjacent atoms.
Let this distance = AC
the two adjacent sides = AB and BC
AB = a = 2R
BC = a = 2R
Using Pythagoras theorem
AC² = AB² + BC²
AC² = a² + a²
AC² = 2a²
AC = √2a²
AC = a√2
But a = 2R
AC = 2R√2
Therefore, the distance between the centers of adjacent atoms for the FCC crystal structure along the [100] is 2R√2
Answer:
The answer is below
Explanation:
The practical considerations you might encounter when you increase the moment of inertia (I) while keeping the cross-sectional area fixed are:
1. Shapes of moment of inertia: Engineers should consider or know the different shapes of moment of inertia for different shape
2. Understanding the orientation of the beam: this will allow engineers to either increase or decrease the moment of inertia of a beam without increasing its cross sectional area.
Answer:
The Employee
Explanation:
Because it is there responsibility