Answer:
a) 2,945 mC
b) P(t) = -720*e^(-4t) uW
c) -180 uJ
Explanation:
Given:
i (t) = 6*e^(-2*t)
v (t) = 10*di / dt
Find:
( a) Find the charge delivered to the device between t=0 and t=2 s.
( b) Calculate the power absorbed.
( c) Determine the energy absorbed in 3 s.
Solution:
- The amount of charge Q delivered can be determined by:
dQ = i(t) . dt

- Integrate and evaluate the on the interval:

- The power can be calculated by using v(t) and i(t) as follows:
v(t) = 10* di / dt = 10*d(6*e^(-2*t)) /dt
v(t) = 10*(-12*e^(-2*t)) = -120*e^-2*t mV
P(t) = v(t)*i(t) = (-120*e^-2*t) * 6*e^(-2*t)
P(t) = -720*e^(-4t) uW
- The amount of energy W absorbed can be evaluated using P(t) as follows:

- Integrate and evaluate the on the interval:

Good fats are also called unsaturated fats. They're found in foods like olives, nuts, avocado, and fish. Cut sources of saturated fat, such as fatty meat and dairy. Choose lean cuts of meat, and try eating more plant-based meals.
Answer:
Magnitude of velocity=10.67 m/s
Magnitude of acceleration=24.62 ft/
Explanation:
The solution of the problem is given in the attachments
An automobile travels along a straight road at 15.65 m/s through a 11.18 m/s speed zone. A police car observed the automobile. At the instant that the two vehicles are abreast of each other, the police car starts to pursue the automobile at a constant acceleration of 1.96 m/s2 . The motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit and applied his brakes and decelerates at 3.05 m/s2
Find the total time required for the police car to over take the automobile.
Answer:
15.02 sec
Explanation:
The total time required for the police car to overtake the automobile is related to the distance covered by both cars which is equal from instant point of abreast.
So; we can say :

By using the second equation of motion to find the distance S;





where ;
u = 0





Recall that:



= 46.68 - 7.85 t -2.505 t² = 0
Solving by using quadratic equation;
t = -6.16 OR t = 3.02
Since we can only take consideration of the value with a positive integer only; then t = 3.02 secs
From the question; The motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit;
Therefore ; the total time required for the police car to over take the automobile = 12 s + 3.02 s
Total time required for the police car to over take the automobile = 15.02 sec
Answer:
20.87 Pa
Explanation:
The formula for dynamic pressure is given as;
q= 1/2*ρ*v²
where ;
q=dynamic pressure
ρ = density of fluid
v = velocity of fluid
First find v by applying the formula for flow rate as;
Q = v*A where ;
Q= fluid flow rate
v = flow velocity
A= cross-sectional area.
A= cross-sectional vector area of the pipe given by the formula;
A= πr² = 3.14 * 4² = 50.27 in² where r=radius of pipe obtained from the diameter given divided by 2.
Q = fluid flow rate = 105 gpm----change to m³/s as
1 gpm = 0.00006309
105 gpm = 105 * 0.00006309 = 0.006624 m³/s
A= cross-sectional vector area = 50.27 in² -------change to m² as:
1 in² = 0.0006452 m²
50.27 in² = 50.27 * 0.0006452 = 0.03243 m²
Now calculate flow velocity as;
Q =v * A
Q/A = v
0.006624 m³/s / 0.03243 m² =v
0.2043 m/s = v
Now find the dynamic pressure q given as;
q= 1/2 * ρ*v²
q= 1/2 * 1000 * 0.2043² = 20.87 Pa