1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vladimir79 [104]
3 years ago
13

In what type of automobile is a transaxle most commonly found?

Engineering
1 answer:
user100 [1]3 years ago
7 0

Answer: vehicles with a front engine and FWD or a rear engine and RWD.

Explanation But the transaxle can also be integrated into the rear axle on cars with a front engine and rear-wheel drive. The transaxle is in the rear where the differential would be rather than beside the engine.

You might be interested in
The current entering the positive terminal of a device is i(t)= 6e^-2t mA and the voltage across the device is v(t)= 10di/dtV.
liberstina [14]

Answer:

a) 2,945 mC

b) P(t) = -720*e^(-4t) uW

c) -180 uJ

Explanation:

Given:

                           i (t) = 6*e^(-2*t)

                           v (t) = 10*di / dt

Find:

( a) Find the charge delivered to the device between t=0 and t=2 s.

( b) Calculate the power absorbed.

( c) Determine the energy absorbed in 3 s.

Solution:

-  The amount of charge Q delivered can be determined by:                      

                                       dQ = i(t) . dt

                  Q = \int\limits^2_0 {i(t)} \, dt = \int\limits^2_0 {6*e^(-2t)} \, dt = 6*\int\limits^2_0 {e^(-2t)} \, dt

- Integrate and evaluate the on the interval:

                   = 6 * (-0.5)*e^-2t = - 3*( 1 / e^4 - 1) = 2.945 C

- The power can be calculated by using v(t) and i(t) as follows:

                 v(t) = 10* di / dt = 10*d(6*e^(-2*t)) /dt

                 v(t) = 10*(-12*e^(-2*t)) = -120*e^-2*t mV

                 P(t) = v(t)*i(t) = (-120*e^-2*t) * 6*e^(-2*t)

                 P(t) = -720*e^(-4t) uW

- The amount of energy W absorbed can be evaluated using P(t) as follows:

                 W = \int\limits^3_0 {P(t)} \, dt = \int\limits^2_0 {-720*e^(-4t)} \, dt = -720*\int\limits^2_0 {e^(-4t)} \, dt

- Integrate and evaluate the on the interval:

                  W = -180*e^-4t = - 180*( 1 / e^12 - 1) = -180uJ

6 0
4 years ago
• What are some methods currently used to unclog arteries and keep them clear?
topjm [15]
Good fats are also called unsaturated fats. They're found in foods like olives, nuts, avocado, and fish. Cut sources of saturated fat, such as fatty meat and dairy. Choose lean cuts of meat, and try eating more plant-based meals.
5 0
3 years ago
If the slotted arm rotates counterclockwise with a constant angular velocity of thetadot = 2rad/s, determine the magnitudes of t
astraxan [27]

Answer:

Magnitude of velocity=10.67 m/s

Magnitude of acceleration=24.62 ft/s^{2}

Explanation:

The solution of the problem is given in the attachments

3 0
3 years ago
An automobile travels along a straight road at 15.65 m/s through a 11.18 m/s speed zone. A police car observed the automobile. A
irina [24]

An automobile travels along a straight road at 15.65 m/s through a 11.18 m/s speed zone. A police car observed the automobile. At the instant that the two vehicles are abreast of each other, the police car starts to pursue the automobile at a constant acceleration of 1.96 m/s2 . The motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit and applied his brakes and decelerates at 3.05 m/s2

Find the total time required for the police car  to over take the automobile.

Answer:

15.02 sec

Explanation:

The total time required for the police car to overtake the automobile is related to the distance covered by both  cars which is equal from instant point of abreast.

So; we can say :

D_{pursuit} =D_{police}

By using the second equation of motion to find the distance S;

S= ut + \dfrac{1}{2}at^2

D_{pursuit} = (15.65 *12 )+(15.65 (t)+ (\dfrac{1}{2}*(-3.05)t^2)

D_{pursuit} = (187.8)+(15.65 \ t)-0.5*(3.05)t^2)

D_{pursuit} = (187.8+15.65 \ t-1.525 t^2)

D_{police} = ut _P + \dfrac{1}{2}at_p^2

where ;

u  = 0

D_{police} =  \dfrac{1}{2}at_p^2

D_{police} =  \dfrac{1}{2}*(1.96)*(t+12)^2

D_{police} = 0.98*(t+12)^2

D_{police} = 0.98*(t^2 + 144 + 24t)

D_{police} = 0.98t^2 + 141.12 + 23.52t

Recall that:

D_{pursuit} =D_{police}

(187.8+15.65 \ t-1.525 t^2)=  0.98t^2 + 141.12 + 23.52t

(187.8 - 141.12)  + (15.65 \ t  -  23.52t)  -( 1.525 t^2    - 0.98t^2)  =   0

= 46.68 - 7.85 t -2.505 t² = 0

Solving by using quadratic equation;

t = -6.16 OR  t = 3.02

Since we can only take consideration of the value with a  positive integer only; then t = 3.02 secs

From the question; The motorist noticed the police car in his rear view mirror 12 s after the police car started the pursuit;

Therefore ; the total time  required for the police car  to over take the automobile = 12 s + 3.02 s

Total time  required for the police car  to over take the automobile = 15.02 sec

8 0
3 years ago
1:
Nataly [62]

Answer:

20.87 Pa

Explanation:

The formula for dynamic pressure is given as;

q= 1/2*ρ*v²

where ;

q=dynamic pressure

ρ = density of fluid

v = velocity of fluid

First find v by applying the formula for flow rate as;

Q = v*A   where ;

Q= fluid flow rate

v = flow velocity

A= cross-sectional area.

A= cross-sectional vector area of the pipe given by the formula;

A= πr² = 3.14 * 4² = 50.27 in²   where r=radius of pipe obtained from the diameter given divided by 2.

Q = fluid flow rate = 105 gpm----change to m³/s as

1 gpm = 0.00006309

105 gpm = 105 * 0.00006309 = 0.006624 m³/s

A= cross-sectional vector area = 50.27 in² -------change to m² as:

1 in² = 0.0006452 m²

50.27 in² = 50.27 * 0.0006452 = 0.03243 m²

Now calculate flow velocity as;

Q =v * A

Q/A = v

0.006624 m³/s / 0.03243 m² =v

0.2043 m/s = v

Now find the dynamic pressure q given as;

q= 1/2 * ρ*v²

q= 1/2 * 1000 * 0.2043² = 20.87 Pa

7 0
3 years ago
Other questions:
  • Which of the following drivers has the right-of-way?
    9·1 answer
  • An MRI technician moves his hand from a region of very low magnetic field strength into an MRI scanner’s 2.00 T field with his f
    5·1 answer
  • If 100 J of heat is added to a system so that the final temperature of the system is 400 K, what is the change in entropy of the
    5·1 answer
  • potential difference is the work done in moving a unit positive charge from one point to another in an electric field. State Tru
    12·1 answer
  • Consider a Carnot heat pump cycle executed in a steady-flow system in the saturated mixture region using R-134a flowing at a rat
    5·1 answer
  • A restaurant and dairy are participating in a community digester pilot program within the UMD Industrial Park. The following was
    9·1 answer
  • In order to avoid a rollover, what is the highest degree incline one should mow on? 10-degree incline 5-degree incline 30-degree
    15·1 answer
  • Which of the following suggestions would best help alleviate the Gulf of Mexico dead zone?
    13·1 answer
  • 2x²-6x+10/x-2 x=2<br><br><br>plsssss<br><br><br><br>​
    9·1 answer
  • Teaching how to characterize and implement high speed power devices for tomorrow's engineers
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!