Answer:
n= 0.03 moles
Explanation:
Using the ideal gas law:
PV=nRT
nRT=PV
n= PV/RT
n: moles
P: pressure in atm
V= volume in L
R= Avogadro's constant = 0.0821
T= Temperature in K => ºC+273.15
n= (0.925 atm)(0.80 L) / (0.0821)(300.15 K)
n= 0.03 moles
Answer:
<u>132.15</u>
Explanation:
Molar mass N = 14.00
Molar mass H = 1.01
Molar mass H4 = 1.01 x 4 = 4.04
Molar mass NH4 = 14.00 + 4.04 = 18.04
Molar mass (NH4)2 = 18.04 x 2 = 36.08
Molar mass S = 32.07
Molar mass O = 16.00
Molar mass O4 = 16.00 x 4 = 64.00
Molar mass SO4 = 32.07 + 64.00 = 96.07
Molar mass (NH4)2SO4 = 36.08 + 96.07 = <u>132.14</u>
16.94/18=.9411111
sig figs: 0.9411 mole of water
The term Rutherford gave to the positively charged particles in the nucleus of an atom was/is Proton.
Hope this helps!
Your answer would be 0.024951344877489 but rounding it would be 0.025 moles