Answer:
2
Explanation:
In two reactions energy is released.
1) C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂ + heat
It is cellular respiration reaction.It involves the breakdown of glucose molecule in the presence of oxygen to yield large amount of energy. Water and carbon dioxide are also produced as a byproduct.
Glucose + oxygen → carbon dioxide + water + 38ATP
2) 2H₂ + O₂ → 2H₂O ΔH = -486 kj/mol
The given reaction is formation of water. In this reaction oxygen and hydrogen react to form water and 486 kj/mol is also released.
The reaction in which heat is released is called exothermic reaction.
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Silicon, it's bring brother would be the prime candidate, although its compounds are notably different from those of carbon.
I think it looks good but some grammars are wrong i suggest trying to put it on grammarly and just check it out its just my suggestion and not doing this for points so you can delete this if it doesnt help
Potassium is not found free in nature but is found in the form of potash. Potash is the ore of potassium and this ore is mined from deep down the earth or can sometimes be found on the surface. Potash was mostly formed as sea water receded and left deposits.
Potash is usually in the form of potassium salts such potassium chloride and potassium sulphate. The potash is mined then taken to the factory where it is crushed and purified by removing such impurities as clay.
The now purified potassium salts are subjected to a process called electrolysis where potassium metal is obtained from its salt.
Answer:
I) the heat capacity of ammonia(s)
II) the heat capacity of ammonia(ℓ)
IV) the enthalpy of fusion of ammonia
Explanation:
Initially, ammonia at 200 K is liquid. To calculate the change of enthalpy from 200 K to 195 K (melting point) we need to know the heat capacity of ammonia(ℓ).
At 195, ammonia is in the transition from liquid to solid (solidification). To calculate the change of enthalpy in that process we need to know the enthalpy of solidification of ammonia, which has the same value but opposite sign to the enthalpy of fusion of ammonia.
From 195 K to 0 K, ammonia is solid. To calculate the change of enthalpy in that process we need to know the heat capacity of ammonia(s).