1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
saw5 [17]
3 years ago
9

Suppose a cart with no fans has a starting velocity of 2 m/s. What will be the velocity of the cart when it reaches the wall?

Physics
1 answer:
Roman55 [17]3 years ago
3 0

Answer:

less than stating velocity due to friction and air resistance.

Explanation:

You might be interested in
Suppose you are in an elevator. As the elevator starts upward, its speed will increase. During this time when the elevator is mo
kkurt [141]

Answer:increased

Explanation:

It is given that elevator speed is increasing while moving upward i.e.its acceleration is increasing .

This causes the apparent to be increased if measured using weighing machine.

considering upward direction to be positive

N-mg=ma

N=m(g+a)

where N=Normal reaction=Apparent weight

a=acceleration of Elevator

thus you feel as if your weight is increased.

6 0
4 years ago
Water in a tank is pressurized by air and pressure measured using a multi-fluid manometer. Determine the gage pressure of air in
sattari [20]

Answer:

The gauge pressure of air is 110 kpa

Explanation:

Atmospheric pressure, P_{atm} = 101 Kpa

P_{gauge} + \rho_w gh_1 + \rho_o gh_2 -\rho_{Hg} gh_3 =P_{atm}

P_{gauge}  = P_{atm} - \rho_w gh_1 - \rho_o gh_2 +\rho_{Hg} gh_3

where;

ρw is the density of water = 1000 kg/m³

ρo is the density of oil = 800 kg/m³

ρHg is the density of mercury = 13,600 kg/m³

g is acceleration due to gravity = 9.8 m/s²

P_{gauge}  = 101,000 - (1000* 9.8*0.2) - (800* 9.8*0.3) +(13,600* 9.8*0.46)\\\\P_{gauge}  = 101,000 - 1960 - 2352 + 13610.26\\\\P_{gauge}  = 110,298.26 pa

Therefore, the gauge pressure of air is 110 kpa

4 0
4 years ago
A hiker climbs a mountain. Starting at the base of the mountain, he first moved up 520m at a 32.0 degree angle. What is the fina
balu736 [363]

Answer:

\displaystyle \vec{d}=

Explanation:

<u>Displacement Vector</u>

Suppose an object is located at a position  

\displaystyle P_1(x_1,y_1)

and then moves at another position at

\displaystyle P_2(x_2,y_2)

The displacement vector is directed from the first to the second position and can be found as

\displaystyle \vec{d}=

If the position is given as magnitude-angle data ( z , α), we can compute its rectangular components as

\displaystyle x=z\ cos\alpha

\displaystyle y=z\ sin\alpha

The question describes the situation where the initial point is the base of the mountain, where both components are zero

\displaystyle P_1(0,0)

The final point is given as a 520 m distance and a 32-degree angle, so  

\displaystyle x_2=520\ cos32^o= 440.99\ m

\displaystyle y_2=520\ sin32^o=275.6\ m

The displacement is

\displaystyle \vec{d}=

5 0
3 years ago
Two people stand facing each other at roller skating rink then push off each other
9966 [12]

a) 0 kg m/s

b) 0 kg m/s

c) +3 m/s

d) 60 N

Explanation:

a)

The momentum of an object is a vector quantity given by:

p=mv

where

m is the mass of the object

v is the velocity of the object

In this problem, we have a system of two people, so the total momentum will be the sum of the individual momenta of the two people:

p=p_1 + p_2

Which can be rewritten as

p=m_1 u_1 + m_2 u_2

where m_1,m_2 are the masses of the two people and u_1,u_2 their initial velocities.

However, the two people are initially at rest, so

u_1 = 0\\u_2 = 0

Therefore the total momentum is

p=0+0=0

b)

The principle of conservation of momentum states that when there are no external forces acting on a system, the total momentum of the system is conserved, so we can write:

p_i = p_f

where

p_i is the total momentum of the system before

p_f is the total momentum of the system after

In this problem,

p_i = 0

As we calculated in part a: this is because the total momentum of the two people before they push off each other is zero.

Therefore, according to the law of conservation of momentum,

p_f = p_i = 0

So the total momentum is zero also after they push off each other.

c)

The total momentum of the girl and the boy after they push off each other can be written as:

p_f = m_1 v_1 + m_2 v_2 (1)

where:

m_1 = 30 kg is the mass of the girl

v_1 = -5 m/s is her velocity (she moves backward, so the negative sign)

m_2 = 50 kg is the mass of the boy

v_2 is the velocity of the boy

As calculated in part b), we also know that the total momentum of the girl and the boy is

p_f = 0 (2)

By combining eq(1) and eq(2) we get

0=m_1 v_1 + m_2 v_2

And solving for v2 we find the velocity of the boy:

v_2=-\frac{m_1 v_1}{m_2}=-\frac{(30)(-5)}{50}=+3 m/s

and the positive sign means he is moving forward.

d)

We can solve this part by applying the impulse theorem, which states that the change in momentum of an object is equal to the product between the force applied on it and the duration of the collision:

\Delta p = F\Delta t

where

\Delta p is the change in momentum

F is the force

\Delta t is the time during which the force is applied

In this problem:

\Delta t = 2.5 s

For the boy, the change in momentum is:

\Delta p = m_2 (v_2 - u_2)

And since

m_2 = 50 kg\\u_2 = 0 m/s\\v_2 = 3 m/s

We have

\Delta p = (50)(3-0)=150 kg m/s

So, the force exerted between the boy and the girl is:

F=\frac{\Delta p}{\Delta t}=\frac{150}{2.5}=60 N

8 0
3 years ago
when using parallax distance is calculated from the sun and not earth do you think this matters? explain your answer.
Elden [556K]

When using parallax, astronomers calculate distance from the sun and not earth to improve on the accuracy of their measurement, since parallax angle decreases as star distance increases.

<h3>What is parallax distance?</h3>

Parallax enables astronomers to measure the distances of far away stars by using trigonometry.

<h3>Why does astronomers measure parallax distance from sun?</h3>

As the distance of star increases, the parallax angle decreases, and great degree of accuracy is required for its measurement.

So taking a refence from the earth instead of the sun will impact the accuracy of their measurement.

Thus, when using parallax, astronomers calculate distance from the sun and not earth to improve on the accuracy of their measurement, since parallax angle decreases as star distance increases.

Learn more about parallax distance here: brainly.com/question/2128443

#SPJ1

7 0
1 year ago
Other questions:
  • A bowling ball has a mass of 7.2 kg and a weight of 70.6 N. It moves down the bowling alley at 1 m/s and strikes a pin with a fo
    15·2 answers
  • Name two methods scientist use to obtain empirical evidence
    12·1 answer
  • A flashlight bulb is connected to a square loop of wire that measures cm on a side as shown in the figure below. assume the bulb
    8·1 answer
  • Which of these substances will form a basic solution in water? A. Ca(OH)2 B. H3PO4 C. H2SO4 D. HCl
    14·1 answer
  • Elements in a period have _____________.
    12·1 answer
  • What is the velocity of a wave with a wavelength of 9 meters and a period of 0.006
    10·1 answer
  • A slender rod of length L has a varying mass-per-unit-length from the left end (x=0) according to dm/dx=Cx where C has units kg/
    13·1 answer
  • Why is the earth Round
    12·2 answers
  • Overload refers to: A. Performing a weight-lifting exercise with the resistance (load) held overhead B. Using a demand (load) ab
    15·1 answer
  • To move the Center of Gravity (CG) forward, you could do which of the following?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!