Answer:
Between 4s and 3s orbital , 3s has more energy .
Explanation:
According to the rule , the lower the value of (n+l) for an orbital , the lower is it's energy . And if two orbitals have the same value of (n+l), the orbital with lower value of n will have the lower energy .
Answer:
The mass of oxygen gas required to produce 65.75 grams of steam is approximately 162.2 grams
Explanation:
From the question, we have the following chemical reaction equation;
2C₃H₁₈(l) + 25O₂ (g) → 16CO₂(g) + 18H₂O (g)
The molar mass of oxygen, O₂ = 32 g/mol
The molar mass of steam, H₂O = 18.01528 g/mol
25 moles of oxygen are required to produce 18 moles of steam
Therefore, according to Proust's law of definite proportions;
(32 × 25) g of oxygen are required to produce (18 × 18.01528) g of steam
65.75 g of steam will be produced by (32 × 25)/(18 × 18.01528) × 65.75 g ≈ 162.2 g of oxygen O₂.
Answer:
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Explanation:
Step 1: Data given
Kp = 4.7 x 10^3 at 400K
Pressure of CH3OH = 0.250 atm
Pressure of HCl = 0.600 atm
Volume = 10.00 L
Step 2: The balanced equation
CH3OH(g) + HCl(g) <=> CH3Cl(g) + H2O(g)
Step 3: The initial pressure
p(CH3OH) = 0.250atm
p(HCl) = 0.600 atm
p(CH3Cl)= 0 atm
p(H2O) = 0 atm
Step 3: Calculate the pressure at the equilibrium
p(CH3OH) = 0.250 - X atm
p(HCl) = 0.600 - X atm
p(CH3Cl)= X atm
p(H2O) = X atm
Step 4: Calculate Kp
Kp = (pHO * pCH3Cl) / (pCH3* pHCl)
4.7 * 10³ = X² /(0.250-X)(0.600-X)
X = 0.249962
p(CH3OH) = 0.250 - 0.249962 = 0.000038 atm
p(HCl) = 0.600 - 0.249962 = 0.350038 atm
p(CH3Cl)= 0.249962 atm
p(H2O) = 0.249962 atm
Kp = (0.249962 * 0.249962) / (0.000038 * 0.350038)
Kp = 4.7 *10³
The pressure of CH3OH and HCl will decrease.
The final partial pressure of HCl is 0.350038 atm
Answer:
describes properties characteristic of no more than two electrons in the vicinity of an atomic nucleus or of a system of nuclei as in a molecule
Answer:
d properties
i took a test on this before