I believe it is the very first one
hope it helps :)
Answer:
(a) Barium is produced at the negative electrode
(b) Iodine is produced at the positive electrode
Explanation:
When an electric current is passed through a solution containing electrolyte, a non spontaneous reaction is stimulated. This results in the flow of <u>positively charged ions to negatively charged electrodes(</u><u>cathode</u><u>) and negatively charged ions to positively charged electrodes(</u><u>anode</u><u>)</u>
When an electric current is passed through molten
in the electrolytic cell, the following reactions takes place:
→
+ 2
At the anode;
Iodine ions will lose an electron and will be oxidized to iodine
→
+ 
At the cathode;
Barium ions gains electrons and its reduced to barium metal
+
→ Ba
<h3>
Answer:</h3>
Ni + Pb(NO₃)₂ → Ni(NO₃)₃ + Pb
<h3>
Explanation:</h3>
We are required to write a balanced equation from the word equation;
- Nickel reacts with lead nitrate (II) to produce nickel(III) nitrate and lead
- The equation will be written by writing the symbols of the reactants and products.
That is;
Ni + Pb(NO₃)₂ → Ni(NO₃)₃ + Pb
We then balance the equation;
- To balance the equation, we put appropriate coefficients on reactants and products, so that the number of atoms of each element is equal on both sides of the equation.
- Thus, the balanced equation will be;
2Ni + 3Pb(NO₃)₂ → 2Ni(NO₃)₃ + 3Pb
They are the elements from scandium to copernicium. The elements between group 2 and group 3
When it comes to equilibrium reactions, it useful to do ICE analysis. ICE stands for Initial-Change-Equilibrium. You subtract the initial and change to determine the equilibrium amounts which is the basis for Kc. Kc is the equilibrium constant of concentration which is just the ratio of products to reactant.
Let's do the ICE analysis
2 NH₃ ⇄ N₂ + 3 H₂
I 0 1.3 1.65
C +2x -x -3x
-------------------------------------
E 0.1 ? ?
The variable x is the amount of moles of the substances that reacted. You apply the stoichiometric coefficients by multiplying it by x. Now, we can solve x by:
Equilibrium NH₃ = 0.1 = 0 + 2x
x = 0.05 mol
Therefore,
Equilibrium H₂ = 1.65 - 3(0.05) = 1.5 molEquilibrium N₂ = 1..3 - 0.05 = 1.25 mol
For the second part, I am confused with the given reaction because the stoichiometric coefficients do not balance which violates the law of conservation of mass. But you should remember that the Kc values might differ because of the stoichiometric coefficient. For a reaction: aA + bB ⇄ cC, the Kc for this is
![K_{C} = \frac{[ C^{c} ]}{[ A^{a} ][ B^{b} ]}](https://tex.z-dn.net/?f=%20K_%7BC%7D%20%3D%20%5Cfrac%7B%5B%20C%5E%7Bc%7D%20%5D%7D%7B%5B%20A%5E%7Ba%7D%20%5D%5B%20B%5E%7Bb%7D%20%5D%7D%20)
Hence, Kc could vary depending on the stoichiometric coefficients of the reaction.