Remember that in this case pressure is equal to 1.00 atm and temperature is equal to 273.15K. So,
P
V
=
n
R
T
→
n
=
P
V
R
T
=
1.00
a
t
m
⋅
7.0
L
0.082
a
t
m
⋅
L
m
o
l
⋅
K
⋅
273.15
K
=
0.31
Since we know hydrogen's molar mass (
2.0
g
m
o
l
), we can determine the mass
m
H
2
=
n
⋅
m
o
l
a
r
.
m
a
s
s
=
0.31
m
o
l
e
s
⋅
2.0
g
m
o
l
=
0.62
g
If indeed you are dealing with STP, remember that, under these conditions, 1 mole of any ideal gas occupies
22.4
L
. So,
n
=
V
V
m
o
l
a
r
=
7.0
L
22.4
L
=
0.31
moles
And, once again,
m
=
0.31
⋅
2.0
=
0.6
Answer:
frequency = velocity of light /wavelength
wavelength = velocity / frequency
=3 x10^8 / 5.9 x 10^11
=0.508 x 10^-3.
<h3>
Answer:</h3>
Chlorine gas (Cl₂)
<h3>
Explanation:</h3>
- According to the Graham's law of diffusion, the diffusion rate of a gas is inversely proportional to the square root of its density or molar mass.
- Therefore, a lighter gas will diffuse faster at a given temperature compared to a heavy gas.
- Consequently, the heavier a gas is then the denser it is and the slower it diffuses at a given temperature and vice versa.
In this case we are given gases, CI₂
, H₂,He and Ne.
- We are required to identify the gas that will diffuse at the slowest rate.
- In other words we are required to determine the heaviest gas.
Looking at the molar mass of the gases given;
Cl₂- 70.91 g/mol
H₂- 2.02 g/mol
He - 4.00 g/mol
Ne- 20.18 g/mol
Therefore, chlorine gas is the heaviest and thus will diffuse at the slowest rate among the choices given.
Answer: Charles's law, Avogadro's law and Boyle's law.
Justification:
Boyle's law states that at constant temperature PV = constant
Charles law states that at constant pressure V/T = constant
Avogadro's law states that at constant pressure ant temperature, equal volume of gases contain equal number of moles: V/n = constant
Ideal gas law states PV/nT = constant => PV = nT*constant = PV = nTR