Light travels in electromagnetic waves in the form of photons. What do photons travel in? Can a frequency have weight? Carry weight? According to Einstien a photon with energy proportional to its frequency basically explains ultraviolet light(among other things), so does that mean light travels within a "larger" version of itself?
We know that light doesn't need a medium through which to travel because the speed of light is experimentally constant: independent of the movement of the source or detector or the direction in which it travels.
Light contrasts with sound, which travels through the air (or some other material medium). If you're stationary with respect to the air, then the speed of sound is the same in all directions. But if you're moving with respect to the air, the speed of sound will be the same in all directions relative to the air---which means that sound coming up in front of you will seem faster and sound catching up to you from behind will seem slower.
If light were a disturbance in a medium, it would exhibit the same behaviour. But light never does---its speed is the same under all circumstances. So it does you no good to postulate an aether. You can still do it, but it makes the theory more complicated than necessary. The only reason to postulate an aether is that you're uncomfortable with the idea of waves not needing a medium. But our modern understanding of quantum mechanics is that all kinds of particles have a wavelike nature, so, if you accept that matter can travel through empty space, you should have no problem accepting the same for light.
so it's true
D. Pickup truck because it's heavy and it gained more momentum
Answer:
The hoop
Explanation:
We need to define the moment of inertia of the different objects, that is,
DISK:

HOOP:

SOLID SPHERE:

HOLLOW SPHERE

If we have the same acceleration for a Torque applied, then


The greatest momement of inertia is for the hoop, therefore will require the largest torque to give the same acceleration
\[S = \Delta Q / T\] where S - entropy, Q heat and T temperature \[S = 295/402 = 0.733 \]
SO IT'S B
Answer:
Current is in phase with voltage in a resistive circuit. Note that the wave form for power is always positive, never negative for this resistive circuit. This means that power is always being dissipated by the resistive load, and never returned to the source as it is with reactive loads.Explanation: