Answer:
d=1.49×1011m
Explanation:
Velocity is defined as the rate of travel, and can be found using the distance formula.
velocity=distancetime
Rearranging this formula we can solve for distance given velocity and time of travel.
d=vt
We are given velocity and time, and so can solve for distance, but if we plug in the values given;
d=(3.00×108m/s)(8.3minutes)
We can see that the units do not match up. Since seconds are the SI unit for time, we will need to convert 8.3 minutes to seconds.
t=(8.3minutes)(60seconds/minute)=(498s)
Now our units work out and we can solve for distance.
= 15.85
We are to show that the given parametric curve is a circle.
The trajectory of a circle with a radius r will satisfy the following relationship:

(with (x_c,y_c) being the center point)
We are given the x and y in a parametric form which can be further rewritten (using properties of sin/cos):

Squaring and adding both gives:

The last expression shows that the given parametric curve is a circle with the center (0,0) and radius A.
Answer:
a. 0.21 rad/s2
b. 2.205 N
Explanation:
We convert from rpm to rad/s knowing that each revolution has 2π radians and each minute is 60 seconds
200 rpm = 200 * 2π / 60 = 21 rad/s
180 rpm = 180 * 2π / 60 = 18.85 rad/s
r = d/2 = 30cm / 2 = 15 cm = 0.15 m
a)So if the angular speed decreases steadily (at a constant rate) from 21 rad/s to 18.85 rad/s within 10s then the angular acceleration is

b) Assume the grind stone is a solid disk, its moment of inertia is

Where m = 28 kg is the disk mass and R = 0.15 m is the radius of the disk.

So the friction torque is

The friction force is

Since the friction coefficient is 0.2, we can calculate the normal force that is used to press the knife against the stone

Answer:
No, the distance from the last stop to the school and the time it takes to travel that distance are required.