Answer:
108.7 V
Explanation:
Two forces are acting on the particle:
- The external force, whose work is 
- The force of the electric field, whose work is equal to the change in electric potential energy of the charge: 
where
q is the charge
is the potential difference
The variation of kinetic energy of the charge is equal to the sum of the work done by the two forces:

and since the charge starts from rest,
, so the formula becomes

In this problem, we have
is the work done by the external force
is the charge
is the final kinetic energy
Solving the formula for
, we find

Answer:
Speed =0.283m/ s
Direction = 47.86°
Explanation:
Since it is a two dimensional momentum question with pucks having the same mass, we derive the momentum in xy plane
MU1 =MU2cos38 + MV2cos y ...x plane
0 = MU2sin38 - MV2sin y .....y plane
Where M= mass of puck, U1 = initial velocity of puck 1=0.46, U2 = final velocity of puck 1 =0.34, V2 = final velocity of puck 2, y= angular direction of puck2
Substitute into equation above
.46 = .34cos38 + V2cos y ...equ1
.34sin38 = V2sin y...equ2
.19=V2cos Y...x
.21=V2sin Y ...y
From x
V2 =0.19/cost
Sub V2 into y
0.21 = 0.19(Sin y/cos y)
1.1052 = tan y
y = 47.86°
Sub Y in to x plane equ
.19 = V2 cos 47.86°
V2=0.283m/s
Answer:
xf = 5.68 × 10³ m
yf = 8.57 × 10³ m
Explanation:
given data
vi = 290 m/s
θ = 57.0°
t = 36.0 s
solution
firsa we get here origin (0,0) to where the shell is launched
xi = 0 yi = 0
xf = ? yf = ?
vxi = vicosθ vyi = visinθ
ax = 0 ay = −9.8 m/s
now we solve x motion: that is
xf = xi + vxi × t + 0.5 × ax × t² ............1
simplfy it we get
xf = 0 + vicosθ × t + 0
put here value and we get
xf = 0 + (290 m/s) cos(57) (36.0 s)
xf = 5.68 × 10³ m
and
now we solve for y motion: that is
yf = yi + vyi × t + 0.5 × ay × t
² ............2
put here value and we get
yf = 0 + (290 m/s) × sin(57) × (36.0 s) + 0.5 × (−9.8 m/s2) × (36.0 s) ²
yf = 8.57 × 10³ m
Answer: 
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,
where,
= initial pressure of gas at STP = 1 atm
= final pressure of gas = 2.67 atm
= initial volume of gas =
= final volume of gas = ?
= initial temperature of gas at STP =
= final temperature of gas =
Now put all the given values in the above equation, we get:

Thus the final volume will be 