Answer:
w = 5832.372 Joules
Explanation:
Mass of water, m = 20 kg
The water was pulled up to a height of 35 meters, i.e. h = 35 m
It takes 14 minutes to pull up the water through the height, 35 m
speed = distance/ time = 35/14 = 2.5 m/min
The bucket's height, y = speed * time = 2.5t meters
6 kg of water drips out of the bucket throughout the 14 minutes
The rate at which the water drips drips out = (6/14) = 0.4286 kg/min
Mass of water that drips out in time, t = 0.4286t kg
The mass of water remaining = (20 - 0.4286t) kg
Change in Workdone, Δw = mgΔy
Δy = 2.5 Δt
Δw = mg * 2.5 Δt
dw = (20 - 0.4286t)g2.5 dt
integrating both sides
dw = (50g - 1.07gt)dt
where b = 0, a = 14
w = 50gt - 1.07g(t²)/2 g = 9.8 m/s²
w = 490t - 5.243t²
w = (490*14 - 5.243*14²) - (490*0 - 5.243*0²)
w = 6860 - 1027.628
w = 5832.372 Joules
Answer: 6067.5 N
Explanation:
Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.
Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.
Answer:
Explanation:
- For diagram refer the attachment.
It is given that five cells of 2V are connected in series, so total voltage of the battery:

Three resistor of 5
, 10
, 15
are connected in Series, so the net resistance:



According to ohm's law:


On substituting resultant voltage (V) as 10 V and resultant resistant, as 30
we get:


The electric current passing through the above circuit when the key is closed will be <u>0.33 A</u>
Answer:
A because the bigger it is the the more force needs to act apond it
Explanation: