Answer:
The final volume will be "70.08 mL".
Explanation:
The given values are:
Molar mass,
M1 = 548 nM
or,
= 
M2 = 484 nM
or,
=
Volume,
V1 = 61.9 mL
V1 = ?
By using the expression, we get
⇒ 
or,
⇒ 
By substituting the values, we get



Answer:
The new findings support the theory that walking first arose underwater, preceding the move onto land and the development of toes and limbs adapted to land perambulation.
Answer: Option (4) is the correct answer.
Explanation:
It is known that equilibrium constant is represented as follows for any general reaction.

K = ![\frac{[C][D]}{[A][B]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BC%5D%5BD%5D%7D%7B%5BA%5D%5BB%5D%7D)
As equilibrium constant is directly proportional to the concentration of products so more is the value of equilibrium constant more will be the number of products formed.
As a result, more is the time taken by the reaction to reach towards equilibrium. Whereas smaller is the value of equilibrium constant more rapidly it will reach towards the equilibrium.
Thus, we can conclude that cases where K is a very small number will require the LEAST time to arrive at equilibrium.
Answer: A plot of the natural log of the concentration of the reactant as a function of time is linear.
Explanation:
Since it was explicitly stated in the question that the half life is independent of the initial concentration of the reactant then the third option must necessarily be false. Also, the plot of the natural logarithm of the concentration of reactant against time for a first order reaction is linear. In a first order reaction, the half life is independent of the initial concentration of the reactant. Hence the answer.
The solubility KI is 50 g in 100 g of H₂O at 20 °C. if 110 grams of ki are added to 200 grams of H₂O <u>the </u><u>solution </u><u>will be </u><u>saturated</u><u>.</u>
<h3>What is solubility?</h3>
Solubility is a condition where the solute is fully dissolved in the solvent. When fully mixed with the solvent.
Given that 50 g of KI is added to 100 g of water at 20 °C it means 100 g of water can dissolve a maximum of 50 g of KCl.
1 g of water will dissolve an quantity of 0.5 g of KCl.
To assay for 200 g of water: 200 g of water can disintegrate a maximum of (0.5) x 200 g of KCl.
The maximum amount of KCl that will dissolve is 100 g
Actualised amount dissolved = 110 g
when Amount dissolved > Maximum solubility limit
110 g > 100 g
Thus, the solution is saturated.
To learn more about solubility, refer to the below link:
brainly.com/question/8591226
#SPJ4