> 2,000
mL of a 5.0 × 10–5% (w/v) sucrose solution
5.0 × 10–3
g/mL * 2000 mL * (1 mol / 342.30 g) = 0.0292 mol
<span>
> 2,000 mL of a 5.0 ppm sucrose solution</span>
5 grams /
1000000 mL * 2000 mL* (1 mol / 342.30 g) = 0.0000292 mol
<span>
> 20 mL of a 5.0 M sucrose solution </span>
5.0 M *
0.020 L = 0.1 mol
Answer:
<span>2,000 mL
of a 5.0 ppm sucrose solution</span>
Answer:
Mass of NH₃ produced = 34 g
Explanation:
Given data:
Mass of nitrogen = 28 g
Mass of Hydrogen = 12 g
Mass of NH₃ produced = ?
Solution:
Chemical equation:
N₂ + 3H₂ → 2NH₃
Moles of nitrogen:
Number of moles = mass/molar mass
Number of moles = 28 g/ 28 g/mol
Number of moles = 1 mol
Moles of hydrogen:
Number of moles = mass/molar mass
Number of moles = 12 g/ 2 g/mol
Number of moles = 6 mol
Now we will compare the moles of hydrogen and nitrogen with ammonia.
H₂ : NH₃
3 : 2
6 : 2/3×6 = 4 mol
N₂ : NH₃
1 : 2
Number of moles of ammonia produced by nitrogen are less thus it will act as limiting reactant.
Mass of ammonia produced:
Mass = number of moles × molar mass
Mass = 2 mol × 17 g/mol
Mass = 34 g
65 grams of HCl = 65/36.5 moles of HCl = 1.78 moles
1.78 moles of HCl dissolved to make a 5 litres of solution has a concentration of 1.78/5 = 0.36 mol/dm^3 (Note: 1 litre = 1 cubic decimetre)
In a strong acid, such as HCl, [H+] = [acid], so [H+] = 0.36
To calculate pH, we have to take the negative logarithm of the concentration of protons
So, -log(0.36) = 0.45
Hope I helped!! xx
I believe the correct answer is 2340g of a particular substance will be dissolved in 650 L of H2O. Hope I was helpful in some way. Thanks. Peace.