Refer to the attached figure. Xp may not be between the particles but the reasoning is the same nonetheless.
At xp the electric field is the sum of both electric fields, remember that at a coordinate x for a particle placed at x' we have the electric field of a point charge (all of this on the x-axis of course):

Now At xp we have:


Which is a second order equation, using the quadratic formula to solve for xp would give us:

or

Plug the relevant values to get both answers.
Now, let's comment on which of those answers is the right answer. It happens that
BOTH are correct. This is simply explained by considring the following.
Let's place a possitive test charge on the system This charge feels a repulsive force due to q1 but an attractive force due to q2, if we place the charge somewhere to the left of q2 the attractive force of q2 will cancel the repulsive force of q1, this translates to a zero electric field at this x coordinate. The same could happen if we place the test charge at some point to the right of q1, hence we can have two possible locations in which the electric field is zero. The second image shows two possible locations for xp.
Answer:
Explanation:
From the question we are told that mass
Thin layer radius 
Generally the expression for ths solution is given as
Xcm =(m*0 =m(-2R))/2m =-mR/(2m)=-R/2
the center of mass will not move at initial state
Considering the center of mass of both bodies


Therefore the enclosing layer moves
The magnitude of the electric field on the master charge is 1.008 x 10¹⁰ N/C, and the force on the test charge is 5.04 x 10⁹ N.
<h3>Electric field on the master charge</h3>
E = kq/r²
where;
- q is magnitude of master charge
- r is distance of separation
- k is Coulomb's constant
E = (9 x 10⁹ x 0.63)/(0.75²)
E = 1.008 x 10¹⁰ N/C
<h3>Force on the test charge</h3>
F = Eq
where;
- E is electric field
- q is the test charge
F = (1.008 x 10¹⁰) x (0.5)
F = 5.04 x 10⁹ N
Thus, the magnitude of the electric field on the master charge is 1.008 x 10¹⁰ N/C, and the force on the test charge is 5.04 x 10⁹ N.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
Answer:
There are 6.87 x 1023 atoms in 1.14 mol SO3, or sulfur trioxide :