1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uranmaximum [27]
3 years ago
7

Lab: Equivalent Resistance of Series and Parallel Circuits

Physics
1 answer:
Aleonysh [2.5K]3 years ago
4 0

Answer:

Since there is only one path for the charges to flow through, the current is the same through each resistor. The equivalent resistance of a set of resistors in a series connection is equal to the algebraic sum of the individual resistances.

You might be interested in
In the Olympic shot-put event, an athlete throws the shot with an initial speed of 12.0m/s at a 40.0? angle from the horizontal.
HACTEHA [7]

A) Horizontal range: 16.34 m

B) Horizontal range: 16.38 m

C) Horizontal range: 16.34 m

D) Horizontal range: 16.07 m

E) The angle that gives the maximum range is 41.9^{\circ}

Explanation:

A)

The motion of the shot is a projectile motion, so we can analyze separately its vertical motion and its horizontal motion.

The vertical motion is a uniformly accelerated motion, so we can use the following suvat equation to find the time of flight:

s=u_y t + \frac{1}{2}at^2 (1)

where

s = -1.80 m is the vertical displacement of the shot to reach the ground (negative = downward)

u_y = u sin \theta is the initial vertical velocity, where

u = 12.0 m/s is the initial speed

\theta=40.0^{\circ} is the angle of projection

So

u_y=(12.0)(sin 40.0^{\circ})=7.7 m/s

a=g=-9.8 m/s^2 is the acceleration due to gravity (downward)

Substituting the numbers, we get

-1.80 = 7.7t -4.9t^2\\4.9t^2-7.7t-1.80=0

which has two solutions:

t = -0.21 s (negative, we ignore it)

t = 1.778 s (this is the time of flight)

The horizontal motion is instead uniform, so the horizontal range is given by

d=u_x t

where

u_x = u cos \theta=(12.0)(cos 40^{\circ})=9.19 m/s is the horizontal velocity

t = 1.778 s is the time of flight

Solving, we find

d=(9.19)(1.778)=16.34 m

B)

In this second case,

\theta=42.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 42.5^{\circ})=8.1 m/s

So the equation for the vertical motion becomes

4.9t^2-8.1t-1.80=0

Solving for t, we find that the time of flight is

t = 1.851 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 42.5^{\circ})=8.85 m/s

So, the range of the shot is

d=u_x t = (8.85)(1.851)=16.38 m

C)

In this third case,

\theta=45^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 45^{\circ})=8.5 m/s

So the equation for the vertical motion becomes

4.9t^2-8.5t-1.80=0

Solving for t, we find that the time of flight is

t = 1.925 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 45^{\circ})=8.49 m/s

So, the range of the shot is

d=u_x t = (8.49)(1.925)=16.34 m

D)

In this 4th case,

\theta=47.5^{\circ}

So the vertical velocity is

u_y = u sin \theta = (12.0)(sin 47.5^{\circ})=8.8 m/s

So the equation for the vertical motion becomes

4.9t^2-8.8t-1.80=0

Solving for t, we find that the time of flight is

t = 1.981 s

The horizontal velocity is

u_x = u cos \theta = (12.0)(cos 47.5^{\circ})=8.11 m/s

So, the range of the shot is

d=u_x t = (8.11)(1.981)=16.07 m

E)

From the previous parts, we see that the maximum range is obtained when the angle of releases is \theta=42.5^{\circ}.

The actual angle of release which corresponds to the maximum range can be obtained as follows:

The equation for the vertical motion can be rewritten as

s-u sin \theta t + \frac{1}{2}gt^2=0

The solutions of this quadratic equation are

t=\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g}

This is the time of flight: so, the horizontal range is

d=u_x t = u cos \theta (\frac{u sin \theta \pm \sqrt{u^2 sin^2 \theta+2gs}}{-g})=\\=\frac{u^2}{-2g}(1+\sqrt{1+\frac{2gs}{u^2 sin^2 \theta}})sin 2\theta

It can be found that the maximum of this function is obtained when the angle is

\theta=cos^{-1}(\sqrt{\frac{2gs+u^2}{2gs+2u^2}})

Therefore in this problem, the angle which leads to the maximum range is

\theta=cos^{-1}(\sqrt{\frac{2(-9.8)(-1.80)+(12.0)^2}{2(-9.8)(-1.80)+2(12.0)^2}})=41.9^{\circ}

Learn more about projectile motion:

brainly.com/question/8751410

#LearnwithBrainly

8 0
3 years ago
Describe a procedure that would increase the potential energy of two magnets if like poles are used. Explain why the energy of t
zalisa [80]

Answer:

If you apply a force to separate 2 opposite poles, the potential energy of the system increases.

5 0
2 years ago
The weight of a body of certain mass becomes zero in space.why?write with reasons​
Anvisha [2.4K]

Answer:

Weight is what you get when a certain amount of gravity is acting on that mass, and something, like the surface of a planet, is resisting that action. In space, when falling freely, there's nothing resisting the pull of gravity so weight disappears. Mass however stays.

hope this helps u

Explanation:

7 0
3 years ago
During the first 50 s a truck traveled at constant speed of 25 m/s. Find the distance that it is traveled.
Allushta [10]
Time=50s
speed=25m/s

Distance = speed×time
=25×50
=1250m

DISTANCE TRAVELLED IS =1250m

6 0
2 years ago
Death Star has a diameter of 160,000m and a mass of 5.1e17kg. Millennium Falcon has a mass of 1.36e6kg (data from Wookieepedia)
lions [1.4K]

Answer:

7229 N

Explanation:

The gravitational force between the Death Star and the Millenium Falcon is given by:

F=G\frac{mM}{R^2}

where

G=6.67\cdot 10^{-11} m^3 kg^{-1} s^{-2} is the gravitational constant

M=5.1\cdot 10^{17} kg is the mass of the Death Star

m=1.36\cdot 10^6 kg is the mass of the Millennium Falcon

R=\frac{160,000 m}{2}=80,000 m is the radius of the Death Star

Substituting numbers into the equation, we find the force

F=(6.67\cdot 10^{-11})\frac{(1.36\cdot 10^6 kg)(5.1\cdot 10^{17} kg)}{(80,000 m)^2}=7229 N

5 0
3 years ago
Other questions:
  • You walk into the kitchen and see a broken egg on the floor. Which of the following is an inference you can make based on this o
    15·2 answers
  • An electron that has an instantaneous velocity of ???? = 2.0 × 106 m ???? ???? + 3.0 × 106 m ???? ???? is moving through the uni
    9·1 answer
  • Which type of friction keeps a mound of rocks from falling away from each other
    6·2 answers
  • Describe the climate, landforms,and existing plant and animal life during the cretaceous period
    12·2 answers
  • What is the wavelength of light (nm) that has a frequency of 6.44 x 1013 s-1?
    7·2 answers
  • If the distance of a charged particle from a wire changes from 10cm to 20 cm , what happens to its magnetic field
    5·2 answers
  • What is 7.4×10 to the second power​
    11·1 answer
  • •. What is called the error due to the procedure and used apparatuses?
    12·1 answer
  • Uses of convace, convex mirror​
    13·1 answer
  • How do biological and environmental factors affect behavior?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!