Answer:
Q = 5267J
Explanation:
Specific heat capacity of copper (S) = 0.377 J/g·°C.
Q = MSΔT
ΔT = T2 - T1
ΔT=49.8 - 22.3 = 27.5C
Q = change in energy = ?
M = mass of substance =508g
Q = (508g) * (0.377 J/g·°C) * (27.5C)
Q= 5266.69J
Approximately, Q = 5267J
Electro waves in a vacuum air is deals with this and electricity when the air and the electricity it makes electro magnets.
The term you need to know is equilibrium. Technically it means that heat gained = heat lost. Normally in beginning chemistry classes the evidence for this condition is a stable temperature.
Answer:
W = 12.96 J
Explanation:
The force acting in the direction of motion of the sand paper is the frictional force. So, we first calculate the frictional force:
F = μR
where,
F = Friction Force = ?
μ = 0.92
R = Normal Force = 2.6 N
Therefore,
F = (0.92)(2.6 N)
F = 2.4 N
Now, the displacement is given as:
d = (0.12 m)(45)
d = 5.4 m
So, the work done will be:
W = F d
W = (2.4 N)(5.4 m)
<u>W = 12.96 J</u>
Explanation:
It is given that,
The speed of light in vacuum is, c = 299,792,458 m/s
The permeability constant of vacuum is,
Let is the permittivity of free space. The relation between is given by :
Hence, this is the required solution.