1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler79 [48]
3 years ago
14

Four springs with the following spring constants, 113.0 N/m, 65.0 N/m, 102.0 N/m, and 101.0 N/m are connected in series. What is

their effective spring constant? 004393 Submit Answer Incorrect. Tries 4/99 Previous Tres If a mass of 0.31 kg is attached what will be the frequency of oscillation?
Physics
1 answer:
Llana [10]3 years ago
4 0

Answer:

K_e_q=22.75878093\frac{N}{m}

f=1.363684118Hz

Explanation:

In order to calculate the equivalent spring constant we need to use the next formula:

\frac{1}{K_e_q} =\frac{1}{K_1} +\frac{1}{K_2} +\frac{1}{K_3} +\frac{1}{K_4}

Replacing the data provided:

\frac{1}{K_e_q} =\frac{1}{113} +\frac{1}{65} +\frac{1}{102} +\frac{1}{101}

K_e_q=22.75878093\frac{N}{m}

Finally, to calculate the frequency of oscillation we use this:

f=\frac{1}{2(pi)} \sqrt{\frac{k}{m} }

Replacing m and k:

f=\frac{1}{2(pi)} \sqrt{\frac{22.75878093}{0.31} } =1.363684118Hz

You might be interested in
What is buoyant force on the ball? Question 9 on student exploration: Archimedes Princable
mariarad [96]
Mass of the displaced material. In water it would be the mass of the water that the volume of the ball displaces.
3 0
3 years ago
A 0.290 kg potato is tied to a string with length 2.50 m, and the other end of the string is tied to a rigid support. The potato
Sergeu [11.5K]

Answer:

A) The speed of the potato at the lowest point of its motion is 7.004 m/s

B) The tension on the string at this point is 8.5347 N

Explanation:

Here we have that the height from which the potato is allowed to swing  is 2.5 m

Therefore we have ω₂² = ω₁² + 2α(θ₂ - θ₁)

Where:

ω₂ = Final angular velocity

ω₁ = Initial angular velocity = 0 rad/s

α = Angular acceleration

θ₂ = Final angle position

θ₁ = Initial angle position

However, we have potential energy of the potato

= Mass m×Gravity g× Height h

= 0.29×9.81×2.5 = 7.1125 J

At he bottom of the swing, the potential energy will convert to kinetic energy as follows

K.E. = P.E. = 7.1125 J

1/2·m·v² = 7.1125 J

Therefore,

v² = 7.1125 J/(1/2×m) = 7.1125 J/(1/2×0.290) = 49.05

∴ v = √49.05 = 7.004 m/s

B) Here we have the tension given by

Tension T in the string = weight of potato + Radial force of motion

Weight of potato = mass of potato × gravity

Radial force of motion of potato = mass of potato × α,

where α = Angular acceleration = v²/r and r = length of the string

∴ Tension T in the string = m×g + m×v²/r = 0.290×(9.81 + 7.004²/2.5)

T = 8.5347 N

4 0
3 years ago
Read 2 more answers
A factory worker pushes a 30.0-kg crate a distance of 4.5 m along a level floor at constant velocity by pushing horizontally on
SIZIF [17.4K]

(a) 73.5 N

The velocity of the crate is constant: this means that the acceleration is zero (a=0), so according to Newton's second law

\sum F = ma

the resultant of the forces must be zero: \sum F = 0 (1)

The motion is along the horizontal direction, so we are only interested in the forces acting along this direction. There are two of them:

F, the push applied by the worker

F_f=-\mu mg, the force of friction, with \mu=0.25 being the coefficient of friction, m=30.0 kg being the mass of the crate, and g=9.8 m/s^2. The negative sign is due to the fact that the friction acts in the opposite direction to the motion. Eq.(1) then becomes

F-\mu mg=0\\F=\mu mg=(0.25)(30.0 kg)(9.8 m/s^2)=73.5 N

So, this is the force that the worker must apply.

(b) 330.8 J

The work done by the pushing force of the worker on the crate is given by:

W=Fd cos \theta

where

F = 73.5 N is the force

d = 4.5 m is the displacement

\theta=0^{\circ} is the angle between the direction of the force and the displacement (0 degrees, since they are in same direction)

Substituting, we have

W=(73.5 N)(4.5 m)(cos 0^{\circ})=330.8 J

(c) -330.8 J

To calculate the work done by friction, we apply the same formula:

W=F_f d cos \theta

where

F_f = \mu mg=(0.25)(30.0 kg)(9.8 m/s^2)=73.5 N is the magnitude of the force of friction

d = 4.5 m is the displacement

\theta=180^{\circ} is the angle between the direction of the force of friction and the displacement (it is 180 degrees since the two are into opposite directions)

Substituting, we find

W=(73.5 N)(4.5 m)(cos 180^{\circ})=-330.8 J

So, the work done by friction is negative.

(d) 0 J

As before, the work done by any force on the crate is

W=F_f d cos \theta

We notice that both gravity and normal force are perpendicular to the displacement: therefore, \theta=90^{circ}, and so

cos \theta=0

which means that the work done by both forces is zero.

(e) 0 J

The total work done on the crate is the sum of the work done by the four forces acting on it, so:

W=W_{push} + W_{friction}+W_{gravity}+W_{normal}=330.8J-330.8J+0+0=0

And this is in accordance with the work-energy theorem, which states that the variation of kinetic energy of the crate is equal to the work done on it: since the crate is moving at constant velocity, its variation of kinetic energy is zero, as well as the work done on it.

5 0
3 years ago
g An airplane is flying through a thundercloud at a height of 1500 m. (This is a very dangerous thing to do because of updrafts,
Stolb23 [73]

Answer:

523269.9\ \text{N/m}

Explanation:

q = Charge

r = Distance

q_1=25\ \text{C}

r_1=3000\ \text{m}

q_2=40\ \text{C}

r_2=850\ \text{m}

The electric field is given by

E=E_1+E_1\\\Rightarrow E=k(\dfrac{q_1}{r_1^2}+\dfrac{q_2}{r_2^2})\\\Rightarrow E=9\times 10^9\times (\dfrac{25}{3000^2}+\dfrac{40}{850^2})\\\Rightarrow E=523269.9\ \text{N/m}

The electric field at the aircraft is 523269.9\ \text{N/m}

4 0
3 years ago
A shopping cart given an initial velocity of 2.0 m/s north undergoes a constant acceleration of 3.0 m/s2 north. what is the dist
morpeh [17]

Following the initial 4.0 seconds of travel, the cart moved 32m.

<h3>What is an equation of motion?</h3>

Physicists use equations of motion to describe how a physical system behaves in terms of how its motion changes over time.

The behavior of a physical system is described by the equations of motion in more detail as a collection of mathematical functions expressed in terms of dynamic variables. These variables typically comprise time and spatial coordinates, but they could also have momentum components. The most flexible option is generalized coordinates, which can be any useful variable that is a component of the physical system. In classical mechanics, the functions are defined in a Euclidean space, while curved spaces are used in relativity instead. The equations are the answers to the differential equations describing the motion of the dynamics of the dynamics of a system are known. The amount of motion changes according to the strength of the force and does so in the direction of the force's applied straight line.

To know more about equations of motion, click here:

brainly.com/question/14355103

#SPJ4

7 0
2 years ago
Other questions:
  • A hiker walks 20.51 m at 33.16 degrees. What is the Y component of his displacement?
    11·1 answer
  • What is the study of the relationships that exist between forces and the motion of objects
    14·1 answer
  • An airplane flies 12 m/s due north with a velocity of 35.11 m/s. how far east does it fly?
    12·2 answers
  • When sighting a firearm using an open sight, in what direction should the rear sight be moved if you want the shot to travel to
    13·1 answer
  • What is Stefan's botmann's constant​
    12·1 answer
  • La energía cinética es la energía que presentan los cuerpos que se encuentran en movimiento.
    12·1 answer
  • a 2000 kg car moving down the road runs into a 5000 kg stationary suv. The car applies a force of 1400 n on the suv what is the
    10·1 answer
  • You are walking around your town. First you walk north from your startingposition and walk for 2 hours at 1 km/h. Then, you walk
    15·1 answer
  • A wave has a speed of 360 m/s. It has a frequency of 20hz what is its wavelength (include correct unit)
    10·2 answers
  • If you travel 450 meters in 40 seconds, what is your average speed in meters per
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!