Answer:
F = 200 N
Explanation:
Given that,
The mass suspended from the rope, m = 20 kg
We need to find the resultant force acting on the rope. The resultant force on the rope is equal to its weight such that,
F = mg
Where
g is acceleration due to gravity
Put all the values,
F = 20 kg × 10 m/s²
F = 200 N
So, the resultant force on the mass is 200 N.
Answer:
a = (v2 - v1) / t
From A to B (8 - 4) m/s / 1 s = 4 m / s^2
From A to D ( 7 - 4) m/s / 5 s = .6 m / s^2
Note these equations hold for "uniform" values
They say nothing about the acceleration at intermediate points - the equation just says that his average speed increased from 4 m/s to 7 m/s during a 5 sec period
Principles<span> of </span>arc welding<span>. </span>Arc welding<span> is a </span>welding<span> process, in which heat is generated by an </span>electric arc<span> struck between an electrode and the work piece. </span>Electric arc<span> is luminous</span>electrical<span> discharge between two electrodes through ionized gas.</span>
The density is 4.76 gcm^-3
and if mass is in kg then density is equal to 4.76*10^-3
Answer: 1.88 N
Explanation:
Data:
Force = 4.00N
angle = 62°
horizontal force = ?
Solution:
The trigonometric ratio that relates horizontal - leg to hypotenuse is the cosine.
That ratio is:
horizontal - leg
cos(angle) = -------------------------
hypotenuse
So, applied to the force, that is:
horizontal force
cos (angle) = -----------------------------------
total force
So, clearing the horizontal component you get:
horizontal force = force * cos (angle)
Substitute the data given:
horizontal force = 4.00N * cos(62°) = 4.00N * 0.4695 = 1.88 N
Answer: 1.88N