1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rufina [12.5K]
3 years ago
10

A parachutist jumps out of an airplane and accelerates with gravity to a maximum velocity of 58.8 m/s in 6.00 seconds. She then

pulls the parachute cord and after a 4.00-second constant deceleration, descends at 10.0 m/s for 60.0 seconds, reaching the ground. From what height did the parachutist jump?
Physics
1 answer:
MrRissso [65]3 years ago
7 0

Answer:

914m

Explanation:

We must divide the parachutist motion into three parts:

First we have free fall motion:

y_1=\frac{v_f^2-v_0^2}{2g}\\y_2=\frac{(58.8\frac{m}{s})^2-0^2}{2(9.8\frac{m}{s^2})}=176.4m

Then, we have a uniformly accelerated motion. The initial speed is this part will be the same final speed as the previous part.

a=\frac{v_f-v_0}{t}\\a=\frac{10.0\frac{m}{s}-58.8\frac{m}{s}}{4s}=-12.2\frac{m}{s^2}\\y_2=\frac{v_f^2-v_0^2}{2a}\\y_2=\frac{(10.0\frac{m}{s})^2-(58.8\frac{m}{s})^2}{2(-12.2\frac{m}{s^2})}=137.6m

Finally, we have a uniform linear motion:

y_3=v*t\\y_3=10\frac{m}{s}*60s=600m

The total heigh will be the sum of all heights:

y=y_1+y_2+y_3\\y=176.4m+137.6m+600m=914m

You might be interested in
The frequency of the second harmonic of a certain musical instrument is 100 Hz. What is the fundamental frequency of the instrum
ruslelena [56]
The harmonic frequency of a musical instrument is the minimum frequency at which a string that is fixed at both ends in the instrument may vibrate. The harmonic frequency is known as the first harmonic. Each subsequent harmonic has a frequency equal to:
n*f, where n is the number of the harmonic and f is the harmonic frequency. Therefore, the harmonic frequency may be calculated using:
f = 100 / 2
f = 50 Hz
4 0
3 years ago
When you step on the accelerator to increase the speed of your car, the force that accelerates the car is: A. the force of your
Dmitry [639]

Answer:

B. the force of friction of the road on the tires

Explanation:

Unless the car engine is like jet engine, the main force that accelerates the car forward is the force of friction of the road on the tires, which is ultimately driven by the force of engine on the tires shaft. As the engine, and the shaft are part of the system, their interaction is internal. According to Newton laws of motion, the acceleration needs external force, in this case it's the friction of the road on the tires.

6 0
3 years ago
A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x, t) = (5
barxatty [35]

Answer:

A thin, taut string tied at both ends and oscillating in its third harmonic has its shape described by the equation y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t]y(x,t)=(5.60cm)sin[(0.0340rad/cm)x]sin[(50.0rad/s)t], where the origin is at the left end of the string, the x-axis is along the string, and the y-axis is perpendicular to the string. (a) Draw a sketch that shows the standing-wave pattern. (b) Find the amplitude of the two traveling waves that make up this standing wave. (c) What is the length of the string? (d) Find the wavelength, frequency, period, and speed of the traveling waves. (e) Find the maximum transverse speed of a point on the string. (f) What would be the equation y(x, t) for this string if it were vibrating in its eighth harmonic?

4 0
3 years ago
*please refer to photo* An electric field of magnitude 5.25 ✕ 10^5N/C points due south at a certain location. Find the magnitude
kvv77 [185]

Answer:

Approximately 3.86\; {\rm N} (given that the magnitude of this charge is -7.35\; {\rm \mu C}.)

Explanation:

If a charge of magnitude q is placed in an electric field of magnitude E, the magnitude of the electrostatic force on that charge would be F = E\, q.

The magnitude of this charge is q = 7.35\; {\rm \mu C}. Apply the unit conversion 1\; {\rm \mu C} = 10^{-6}\; {\rm C}:

\begin{aligned} q &= 7.35\; {\mu C} \times \frac{10^{-6}\; {\rm C}}{1\; {\mu C}} = 7.35\times 10^{-6}\; {\rm C}\end{aligned}.

An electric field of magnitude E = 5.25\times 10^{5}\; {\rm N \cdot C^{-1}} would exert on this charge a force with a magnitude of:

\begin{aligned}F &= E\, q \\ &= 5.25 \times 10^{5}\; {\rm N \cdot C^{-1}} \times (-7.35\times 10^{-6}\; {\rm C}) \\ &\approx 3.86\; {\rm N}\end{aligned}.

Note that the electric charge in this question is negative. Hence, electrostatic force on this charge would be opposite in direction to the the electric field. Since the electric field points due south, the electrostatic force on this charge would point due north.

4 0
2 years ago
5.An ice skater pushes against a wall with a force of 59 N. Ignoring friction, if the ice skater has
natali 33 [55]

Answer:

<em>Answer: (A) 0.75 m/s^2</em>

Explanation:

The Second Newton's law states that an object acquires acceleration when an external unbalanced net force is applied to it.

That acceleration is proportional to the net force and inversely proportional to the mass of the object.

It can be expressed with the formula:

\displaystyle a=\frac{F_n}{m}

Where

Fn = Net force

m  = mass

The ice skater pushes against a wall with a force of 59 N. The wall returns the force and the skater now has a net force of Fn=59 N that makes him accelerate. Being m=79 kg the mass of the skater, the acceleration is:

\displaystyle a=\frac{59}{79}

a = 0.75\ m/s^2

Answer: (A) 0.75 m/s^2

5 0
3 years ago
Other questions:
  • Calculate the translational speed of a cylinder when it reaches the foot of an incline 7.35 m high. assume it starts from rest a
    10·1 answer
  • A ray of light is incident on a flat surface of a block of polystyrene, with an index of refraction of 1.49, that is submerged i
    5·1 answer
  • Your science class decides to conduct an experiment to learn more about ice. You set one ice cube on the counter at room tempera
    14·2 answers
  • Which of the following is the best explanation of work?
    15·2 answers
  • Looking straight downward into a rain puddle whose surface is covered with a thin film of gasoline. you notice a swirlingpattern
    11·1 answer
  • Help me with this PLEASEEEE!
    5·2 answers
  • Please help me with my quiz?
    9·1 answer
  • A force of 8 N accelerates by 4 m/s^2. What would be the amount of force needed to give a final acceleration of 5.3 m/s^2
    15·1 answer
  • Examples of impact printers​
    6·1 answer
  • Why does hitting a magnet with a hammer cause the magnetism to be reduced?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!