Answer:
2874.33 m/s²
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s²

Now H-h = 0.588 - 0.002 = 0.586 m
The final velocity will be the initial velocity

Acceleration of the frog is 2874.33 m/s²
Answer:
0.74 N/cm
Explanation:
The following data were obtained from the question:
Mass (m) = 3 Kg
Extention (e) = 40 cm
Spring constant (K) =?
Next, we shall determine the force exerted on the spring.
This can be obtained as follow:
Mass (m) = 3 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = mg
F = 3 × 9.8
F = 29.4 N
Finally, we shall determine the spring constant of the spring. This can be obtained as follow:
Extention (e) = 40 cm
Force (F) = 29.4 N
Spring constant (K) =?
F = Ke
29.4 = K × 40
Divide both side by 40
K = 29.4 / 40
K = 0.74 N/cm
Therefore, the spring constant of the spring is 0.74 N/cm
Answer:
nreaker
Explanation:
A switch that automatically interrupts or shuts off an electric current at the first indication of a overload
Answer:
Kepler's First Law: each planet's orbit about the Sun is an ellipse. The Sun's center is always located at one focus of the orbital ellipse. The Sun is at one focus. The planet follows the ellipse in its orbit, meaning that the planet to Sun distance is constantly changing as the planet goes around its orbit.