<u>Answer:</u>
Option (a)
<u>Explanation :</u>
A stage hand starts sliding a large piece of stage scenery originally at rest by pulling it horizontally with a force of 176 N.
Hence Force applied
Force on piece of scenery
µk =
=
= =0.36
coefficient of static friction is 0.36
Answer: heavy objects will have a higher terminal velocity than light objects. ... It takes a larger air resistance force to equal the weight of a heavier object. A larger air resistance force requires more speed.) Therefore, heavy objects will fall faster in air than light objects.
Answer:
c
Explanation:
OPEN AND CLOSE REFRIGERATION VALVES
Speed and velocity have the same magnitudes. The only difference is that speed is a scalar quantity and velocity is a vector quantity. In other words, speed is just a magnitude, while velocity is a magnitude with direction. They're essentially the same.
Let's convert miles to meters and minutes to seconds
1/4 mile = 402.34 meters ( 1 mile = 1609 m)
13.1 minutes = 786 seconds (1 minute = 60 seconds)
Speed is calculated as distance over time, thus,
Speed = (402.34 meters)*8/786 seconds
a.) Speed = 4.1 m./s
b.) Velocity = 4.1 m/s
Answer: 0.0138 m^2 = 138 cm^2
Explanation:
The thermal expansion is the term use for the physical phenomena of dilation of the objects when they are exposed to changes in temperature.
The objects dilate when they are heated and contract when they are cooled.
The dilation is proportional to the change in temperatur.
For linear dilation, the proportionality constant is called linear dilation coefficient of the materials, it is named α and is measured in °C ^-1.
ΔL = α * Lo * ΔT, which means that the dilation (or contraction) is proportional to the product of the original length (Lo) and the change of temperature (ΔT).
There is also superficial dilation, for which the dilation is:
ΔA = β * Ao * ΔT, which means that the superficial dilation (or contraction) is proportional to the product of the original area (Ao) and the change of temperature (ΔT).
It is very interesting and important to solve problems that β = 2α, because regularly you will find the values of α for different materials and so, you just to multiply it times 2 to use β.
For this problem:
- Original area, Ao = area of the flat roof at - 10°C = 2.0m * 3.0m = 6.0 m^2.
- α for aluminum = 24 * 10^ -6 °C^-1.
- ΔT = 38°C - (-10°C) = 48°C
So, ΔA = 6.0m^2 * (2 * 24*10^-6 °C&-1) * 48°C = 0.0138 m^2
And that is the area that should stick out in summer to fit the structure during cold winter nights.
You can pass that number to cm^2 to grasp better the idea of this size:
0.0138 m^2 * (100 cm)^2 / m^2 = 138 cm^2