The force needed to the stop the car is -3.79 N.
Explanation:
The force required to stop the car should have equal magnitude as the force required to move the car but in opposite direction. This is in accordance with the Newton's third law of motion. Since, in the present problem, we know the kinetic energy and velocity of the moving car, we can determine the mass of the car from these two parameters.
So, here v = 30 m/s and k.E. = 3.6 × 10⁵ J, then mass will be

Now, we know that the work done by the brake to stop the car will be equal to the product of force to stop the car with the distance travelled by the car on applying the brake.Here it is said that the car travels 95 m after the brake has been applied. So with the help of work energy theorem,
Work done = Final kinetic energy - Initial kinetic energy
Work done = Force × Displacement
So, Force × Displacement = Final kinetic energy - Initial Kinetic energy.

Thus, the force needed to the stop the car is -3.79 N.
Answer:
Explanation:
Deceleration of solid disk = g sin10/1 + k²/r² = g sin 10 / 1 + 1/2 = g sin 10 x 2/3
[ k is radius of gyration of disk which is equal to( 1/√2)x r ]
deceleration a = -1.1345 m/s²
v = u - at , t = u / a = 1.5 / 1.1345 = 1.322 s.
Answer:Although the nervous system is very complex, nervous tissue consists of just two basic types of nerve cells: neurons and glial cells Neurons are the structural and functional units of the nervous system They transmit electrical signals, called nerve impulses. Glial cells provide support for neurons.
Explanation:
Answer:
Maybe to get different readings
Answer:
(B) Boundary work
(D) Heat
Explanation:
Boundary work and heat quantitatively describe the transition between equilibrium states of thermodynamic systems. They are not only a function of the initial and final states, but also of the successive intermediate states through which the system passes, this is, depend on the path taken to reach one state from another. Thus, are path functions.