Answer:
4.8 g H₂O
Explanation:
To find the mass of water, you need to (1) convert grams B₂H₆ to moles B₂H₆ (via molar mass from periodic table), then (2) convert moles B₂H₆ to moles H₂O (via mole-to-mole ratio from reaction coefficients), and then (3) convert moles H₂O to grams H₂O (via molar mass from periodic table).
It is important to arrange the ratios/conversions in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 2 sig figs because the given value (3.7 grams) has 2 sig figs.
Molar Mass (B₂H₆): 2(10.811 g/mol) + 6(1.008 g/mol)
Molar Mass (B₂H₆): 27.67 g/mol
1 B₂H₆ + 3 O₂ ---> 2 HBO₂ + 2 H₂O
^ ^
Molar Mass (H₂O): 15.998 g/mol + 2(1.008 g/mol)
Molar Mass (H₂O): 18.014 g/mol
3.7 g B₂H₆ 1 mole 2 moles H₂O 18.014 g
---------------- x --------------- x ----------------------- x ----------------- = 4.8 g H₂O
27.67 g 1 mole B₂H₆ 1 mole
Answer:
One of the main components of an airbag is the gas that fills it. As part of the design process, you need to determine the exact amount of nitrogen that should be produced. Calculate the number of moles of nitrogen required to fill the airbag. Show your work. Assume that the nitrogen produced by the chemical reaction is at a temperature of 495°C and that nitrogen gas behaves like an ideal gas. Use this fact sheet to review the ideal gas law.
Answer:
New volume = 150 mL
Explanation:
Initial temperature, T₁ = 35°C
Initial volume, V₁ = 350 mL
We need to find the change in volume when the temperature drops to 15°C.
The relation between the temperature and the volume is given by Charle's law. Let new volume is V₂. It can be given by :

So, the new volume is 150 mL.
Completely off topic but I couldn’t help but notice you play valorant. If your down what’s ur name and tag line?