Answer: The final temperature will be 
Explanation:
To calculate the specific heat of substance during the reaction.

where,
q = heat absorbed =41840 J
c = specific heat = 
m = mass of water = 200 g
= final temperature =?
= initial temperature = 
Now put all the given values in the above formula, we get:


Thus the final temperature will be 
Answer:
SAMPLE A - pure substance.
SAMPLE B - homogeneous mixture.
SAMPLE C - heterogeneous mixture.
Explanation:
Answer:
0.0468 g.
Explanation:
- The decay of radioactive elements obeys first-order kinetics.
- For a first-order reaction: k = ln2/(t1/2) = 0.693/(t1/2).
Where, k is the rate constant of the reaction.
t1/2 is the half-life time of the reaction (t1/2 = 1620 years).
∴ k = ln2/(t1/2) = 0.693/(1620 years) = 4.28 x 10⁻⁴ year⁻¹.
- For first-order reaction: <em>kt = lna/(a-x).</em>
where, k is the rate constant of the reaction (k = 4.28 x 10⁻⁴ year⁻¹).
t is the time of the reaction (t = t1/2 x 8 = 1620 years x 8 = 12960 year).
a is the initial concentration (a = 12.0 g).
(a-x) is the remaining concentration.
∴ kt = lna/(a-x)
(4.28 x 10⁻⁴ year⁻¹)(12960 year) = ln(12)/(a-x).
5.54688 = ln(12)/(a-x).
Taking e for the both sides:
256.34 = (12)/(a-x).
<em>∴ (a-x) = 12/256.34 = 0.0468 g.</em>
Answer:
clf3
Explanation:
it occupied more than 8 valence electrons
Lithium oxide is able to undergo both the processes of dissolution and dissociation.
Dissociation refers to the break down a chemical substance into its constituents. Ionization refers to the loss of electrons from a chemical specie while dissolving refers to the ability of a solid to form a solution.
Let us now look at each of the following species;
- Lithium oxide undergoes dissolution and dissociation.
- Magnesium nitride undergoes dissolution and dissociation.
- Hydrobromic acid undergoes dissolution and dissociation.
Learn more about ionization: brainly.com/question/1602374