Answer:
The other colors of the electromagnetic spectrum are absorbed by the substance and not reflected. If you were to look at it in infared or unltraviolet it would reflect different colors than those of the visible spectrum.
Explanation:
Answer:
Yes, Pb3(PO4)2.
Explanation:
Hello there!
In this case, according to the given balanced chemical reaction, it is possible to use the attached solubility series, it is possible to see that NaNO3 is soluble for the Na^+ and NO3^- ions intercept but insoluble for the Pb^3+ and PO4^2- when intercepting these two. In such a way, we infer that such reaction forms a precipitate of Pb3(PO4)2, lead (II) phosphate.
Regards!
Answer:
- In general, polar solutes are most soluble in highly polar solvents.
Explanation:
The general rule is "like dissolves like" which means that <em>polar solvents </em>dissolve polar (or ionic) <em>solutes</em> and <em>non-polar solvents</em> dissolve non-polar solutes.
In order for a solvent dissolve a solute, the strength of the interacttion (force) between the solute and the solvent units (atoms, molecules, or ions) must be stronger than the strength of the forces that keep together he particles of the pure substances (known as intermolecular forces).
Since the nature of the interactions between the units are electrostatic, the more polar is the solvent the better it will be able to attract and surround the solute particles, keeping them separated and in solution. That mechanism explains why polar solutes will be most soluble in highly polar solvents.
C7H14 + 10.5 O2 -> 7 CO2 + 7 H2O
Or, if whole numbers must be used:
2 C7H14 + 21 O2 -> 14 CO2 + 7 H2O
Answer:
<u><em></em></u>
- <u><em>Concentrated</em></u>
Explanation:
Concentration measures the amount of solute in a solution. There are many expressions of concentration. Some of then are percentage (mass/mass, volume/mass, volume/volume), molarity, molality, mole fraction, among others.
When a solution has a high concentration it is said that it is <em>concentrated; </em>when a solution has a low concentration is is said that is is diluted.
Concentrated solutions expressed in percentage typically have about 80 - 90% (or more) of solute.
Diluted solutions expressed in percentage, tipylcally have about 10% - 20% or less.
But they are not fixed limits. You might say that a 85% solution is concentrated. Acids at 75 % sure are concentrated.
Hence, a 93.3% solution is concentrated, definitely.