1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
k0ka [10]
3 years ago
14

Which statement accurately describes surface tension?

Physics
2 answers:
lawyer [7]3 years ago
5 0

Answer:

A. Attractive forces between molecules at the surface cause a liquid to resist spreading out.

Explanation:

Surface tension can be defined as a property of liquid which makes its surface to resist an external force, as a result of the cohesive nature of its molecules.

This ultimately implies that, the surface tension of a liquid is mainly caused by the cohesive forces existing between its molecules.

Hence, the statement which accurately describes surface tension is that, the attractive forces between molecules at the surface cause a liquid to resist spreading out. Also, the attractive force is due to electrostatic forces and it reduces the surface area of a liquid.

Mathematically, surface tension is given by the formula;

Surface tension = surface force)/length the force acts

γ = F /d

Where;

Γ is the Surface tension.

F is the force which applies to the liquid.

d is the length where the force acts

Dahasolnce [82]3 years ago
5 0

Answer:

A

Explanation:

You might be interested in
The quadriceps muscles pull on the patella simultaneously. Below are the forces from each
Nostrana [21]

Based on the calculation of the resultant of vector forces:

  1. the resultant force due to the quadriceps is 1795 N
  2. the resultant force due to the quadriceps is 1975 N. Training and strengthening the vastus medialis results in a greater force of muscle contraction.

<h3>What is the resultant force due to the quadriceps?</h3>

The resultant of more than two vector forces is given by:

  • F = √Fₓ² + Fₙ²

where:

  • Fₓ is the sum of the horizontal components of the forces
  • Fₙ is the sum of the vertical components of the forces
  • Fx = F₁cosθ + F₂cosθ + F₃cosθ + F₄cosθ
  • Fₙ = F₁sinθ + F₂sinθ + F₃sinθ + F₄sinθ
  • F₁ = 680N, θ = 90 = 30 = 120°
  • F₂ = 220 N, θ = 90 + 16 = 106°
  • F₃ = 600 N, θ = 90 + 15 = 105°
  • F₄ = 480 N, θ = 90 - 35 = 55°

then:

Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 480 * cos 55

Fx = -280.6 N

Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 480 * sin 55

Fₙ = 1773.1 N

then:

F = √(-280.6)² + ( 1773.1)²

F = 1795.16 N

F ≈ 1795 N

Therefore, the resultant force due to the quadriceps is 1795 N

<h3>What would happen if the vastus medialis was trained and strengthened to contract with 720N of force?</h3>

From the new information provided:

  • F₁ = 680N, θ = 90 = 30 = 120°
  • F₂ = 220 N, θ = 90 + 16 = 106°
  • F₃ = 600 N, θ = 90 + 15 = 105°
  • F₄ = 720 N, θ = 90 - 35 = 55°

then:

Fx = 680 * cos 120 + 220 * cos 106 + 600 * cos 105 + 720 * cos 55

Fx = -142.95 N

Fₙ = 680 * sin 120 + 220 * sin 106 + 600 * sin 105 + 720 * sin 55

Fₙ = 1969.72 N

then:

F = √(-142.95)² + ( 1969.72)²

F = 1974.9 N

F ≈ 1975 N

Therefore, the resultant force due to the quadriceps is 1975 N.

Training and strengthening the vastus medialis results in a greater force of muscle contraction.

Learn more about resultant of forces at: brainly.com/question/25239010

3 0
2 years ago
The Earth and Moon are separated by about 4.0 10^6 m. Suppose Mars is [{MathJax fullWidth='false' 2.9 \times 10^{11} }] m from E
Shalnov [3]

Answer:

a) α=7.9x10^-4 rad

b) θ=1.12x10^-4 rad

c) The Earth and the Moon cannot be seen without a telescope.

Explanation:

In this exercise we will use the concepts of angular resolution, which depends on both the wavelength of the rays and the diameter of the eye or lens on the meter. Its unit of measure is the radian. The attached image shows the solution step by step.

4 0
3 years ago
A 2.5-kg ball and a 5.0-kg ball have an elastic collision. Before the collision, the 2.5-kg ball was at rest and the other ball
lesantik [10]

The kinetic energy of 2.5 kg ball after collision is 27.09 J.

Answer:

Explanation:

In elastic collision, the sum of momentum of the objects before collision will be equal to the sum of momentum of the objects after collision.  

We know that momentum is the product of mass and velocity acting on any object.

So, the conservation of energy in elastic collision leads to following equation:

M_{1} u_{1} +M_{2} u_{2}=M_{1}  v_{1}+M_{2}  v_{2}

Since, the momentum is conserved ,the kinetic energy will also be conserved in elastic collision. So

M_{1} u_{1} ^{2}+M_{2} u_{2} ^{2}=M_{1}v_{1} ^{2}+  M_{2}v_{2} ^{2}

Since initial velocity for M1 ball is zero, then

M_{2} u_{2}=M_{1}  v_{1}+M_{2}  v_{2}

and

M_{2} u_{2} ^{2}=M_{1}v_{1} ^{2}+  M_{2}v_{2} ^{2}

So, on solving all the above equation, we get an equation for velocity and that is

\frac{2M_{2}u_{2} }{(M_{1}+M_{2}  }=final velocity of ball with mass 2.5 kg

v = \frac{2(5*3.5)}{2.5+5}=4.67 m/s

So kinetic energy will be 1/2 mv2

Kinetic energy of 2.5 kg ball is \frac{1}{2}*2.5*(4.67)^{2}  =27.09 J

So the kinetic energy of 2.5 kg ball after collision is 27.09 J.

6 0
3 years ago
A volumetric flask made of Pyrex is calibrated at 20.0°C. It is filled to the 285-mL mark with 40.5°C glycerin. After the flask
Charra [1.4K]

Answer:

V_f = 287.04 mL

Explanation:

We are given the initial/original volume of the glycerine as 285 mL.

Now, after it is finally cooled back to 20.0 °C , its volume is given by the formula;

V_f = V_i (1 + βΔT)

Where;

V_f is the final volume

V_i is the original volume = 285 mL

β is the coefficient of expansion of glycerine and from online tables, it has a value of 5.97 × 10^(-4) °C^(−1)

Δt is change in temperature = final temperature - initial temperature = 32 - 20 = 12 °C

Thus, plugging in relevant values;

V_f = 285(1 + (5.97 × 10^(-4) × 12))

V_f = 287.04 mL

7 0
3 years ago
A ship 1200m off shore fires a gun. how long after the gun is fired will it be heard on the shore?​
ryzh [129]

Answer:

We know that the speed of sound is 343 m/s in air

we are also given the distance of the boat from the shore

From the provided data, we can easily find the time taken by the sound to reach the shore using the second equation of motion

s = ut + 1/2 at²

since the acceleration of sound is 0:

s = ut + 1/2 (0)t²

s = ut    <em>(here, u is the speed of sound , s is the distance travelled and t is the time taken)</em>

Replacing the variables in the equation with the values we know

1200 = 343 * t

t = 1200 / 343

t = 3.5 seconds (approx)

Therefore, the sound of the gun will be heard at the shore, 3.5 seconds after being fired

6 0
3 years ago
Other questions:
  • PLEASE HELP ME?!?! PLEASE PLEASE
    14·1 answer
  • Why is density and the melting point both substances of mass
    6·1 answer
  • Gasoline flows in a long, underground pipeline at a constant temperature of 15o C (rho = 680 kg/m3 ; ν = 4.6 × 10-7 m2 /s). Two
    6·1 answer
  • Why do we celebrate veterans day
    12·1 answer
  • The new sweet potato plant grew from the root of the original through
    6·1 answer
  • IS THERE A PLASTIC THAT YOU CAN SEE AND BREATHE THROUGH??? SOMEONE PLEASE ANSWER THIS!!!
    14·1 answer
  • Say you have a differential drive robot that has an axle length of 30cm and wheel diameter of 10cm. Find the angular velocity fo
    11·1 answer
  • What is the purpose of using significant figures? How does it relate to accuracy, precision, resolution, and uncertainty?
    8·1 answer
  • A solid wood door 1.00 m wide and 2.00 m high is hinged along one side and has a total mass of 45.0kg . Initially open and at re
    14·1 answer
  • If a battery causes a wire to carry a current of 4 Amps how many coulombs of charge flow past any point in the wire in 3 seconds
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!