1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inn [45]
3 years ago
6

A wooden block is sitting on an inclined plane near the bottom. The student gave the block a flick and it moved up the inclined

plane then stopped. It is expected that the block to start sliding back down the inclined plane but it did not. It just sat there near the top. What is your explanation why the block stopped and did not begin sliding again?
Physics
1 answer:
sladkih [1.3K]3 years ago
6 0

Answer:

The block didn't slide due to balancing of gravitational force with friction force

Explanation:

When the block was given a flick the force provided an acceleration to it and it moved up the inclined plane. when the block reached top it was expected that it would slide back but it didn't this happened because of the frictional force acting on the bottom the block which was balancing the gravitational force component along the plane and this prevented sliding back of the block.

static friction  was balancing mg*sin(theta)

fs = mg*sin(theta)

You might be interested in
HELP!!!! WILL MARK BRAINLIEST!!!! IF YOU LEAVE AN ANSWER EXPLAIN! THANKS
Travka [436]

Answer:

the answer is C

Explanation:

we know this because if you compare the graphs and look at the direction. it isn't always in the explanation or the few sentences they gave you at the top. also, look at the waves, you can see in Davids drawing that it is directly straight up, A and B do not represent that. A isn't even a valid answer. Notice also in A that the arrow is going in the completely different direction than in Davids drawing. B is also going a different direction even though it is only turned a little bit although if it was straight up like Davids drawing then it would most likely be a correct answer. C does have one arrow going a different direction but look at how it has two, showing in which if the waves were to turn then the arrow is still valid

7 0
2 years ago
Simple machines are divided into two main categories. Levers and inclined planes.<br> True or false
avanturin [10]
The answer is False.  Simple machines are divided into three main categories, and not two.  They are Levers, inclined planes and Pulleys. <span>These three simple machines all change force in such a way that it makes it easier for us to move an object. </span>
5 0
3 years ago
Which of the following shows the units of angular motion?
Whitepunk [10]

Answer:

  • The units are <em>(</em><em>rad</em><em>/</em><em>s</em><em>^</em><em>2</em><em>)</em><em> </em>
4 0
3 years ago
A ball is thrown with an initial speed vi at an angle i with the horizontal. The horizontal range of the ball is R, and the ball
adell [148]

Answer:

Part a)

T = 2\sqrt{\frac{R}{3g}}

Part b)

v_x = \frac{\sqrt{3Rg}}{2}

Part c)

v_y = \sqrt{Rg/3}

Part d)

v = \frac{1}{2}\sqrt{13Rg}

Part e)

\theta_i = 33.7 degree

Part f)

H = \frac{13R}{8}

Part g)

X = \frac{13R}{4}

Explanation:

Initial speed of the launch is given as

initial speed = v_i

angle = \theta_i degree

Now the two components of the velocity

v_x = v_i cos\theta_i

similarly we have

v_y = v_i sin\theta_i

Part a)

Now we know that horizontal range is given as

R = \frac{v_i^2 (2sin\theta_icos\theta_i)}{g}

maximum height is given as

H = \frac{R}{6} = \frac{v_i^2 sin^2\theta_i}{2g}

so we have

v_i sin\theta = \sqrt{Rg/3}

time of flight is given as

T = \frac{2v_isin\theta_i}{g}

T = \frac{2\sqrt{Rg/3}}{g}

T = 2\sqrt{\frac{R}{3g}}

Part b)

Now the speed of the ball in x direction is always constant

so at the peak of its path the speed of the ball is given as

R = v_x T

R = v_x 2\sqrt{\frac{R}{3g}}

v_x = \frac{\sqrt{3Rg}}{2}

Part c)

Initial vertical velocity is given as

v_y = v_i sin\theta_i

v_i sin\theta = \sqrt{Rg/3}

Part d)

Initial speed is given as

v = \sqrt{v_x^2 + v_y^2}

so we will have

v = \sqrt{Rg/3 + 3Rg/4}

v = \frac{1}{2}\sqrt{13Rg}

Part e)

Angle of projection is given as

tan\theta_i = \frac{v_y}{v_x}

tan\theta_i = \frac{\sqrt{Rg/3}}{\sqrt{3Rg}/2}

\theta_i = 33.7 degree

Part f)

If we throw at same speed so that it reach maximum height

then the height will be given as

H = \frac{v^2}{2g}

H = \frac{13R}{8}

Part g)

For maximum range the angle should be 45 degree

so maximum range is

X = \frac{v^2}{g}

X = \frac{13R}{4}

3 0
3 years ago
A steady electric current flows through a wire. If 9.0 C of charge passes a particular spot in the wire in a time period of 2.0
defon

1) Current: 4.5 A

2) Time taken: 4.7 s

Explanation:

1)

The electric current intensity is defined as the rate at which charge flows in a conductor; mathematically:

I=\frac{q}{t}

where

I is the current

q is the amount of charge passing a given point in a time t

For the wire in this problem, we have

q = 9.0 C is the amount of charge

t = 2.0 s is the time interval

Solving for I, we find the current:

I=\frac{9.0}{2.0}=4.5 A

2)

To solve this problem, we can use again the same formula

I=\frac{q}{t}

where

I is the current

q is the amount of charge passing a given point in a time t

In this problem, we have:

I = 3.0 A (current)

q = 14.0 C (charge)

Therefore, the time taken for the charge to move past a particular spot in the wire is

t=\frac{q}{I}=\frac{14.0}{3.0}=4.7 s

Learn more about electric current:

brainly.com/question/4438943

brainly.com/question/10597501

brainly.com/question/12246020

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • You move a 25 n object 4 meters. find the work you did
    15·2 answers
  • The corpus callosum is comprised of more than 200 million axons that connect the hemispheres of the brain. Please select the bes
    11·2 answers
  • half life worksheet answer key 3. What percent of a sample As-81 remains un-decayed after 43.2 seconds
    10·1 answer
  • A cyclist rides 6.2 km east, then 9.28 km in a direction 27.27 degrees west of north, then 7.99 km west. A. What is the magnitud
    10·1 answer
  • The law of repulsion by Coulomb agrees with:
    7·2 answers
  • What conversion takes place in a generator?
    13·2 answers
  • Is gravity constant over the entire earth surface.<br>Explain why?​
    7·1 answer
  • Explain why some people see objects nearby clearly, but objects far away appear blurry. Also, explain how this condition can be
    14·2 answers
  • What is the drawback to use period of pendulum as time standard
    12·1 answer
  • Obtain a volume of 12.5 millimeters of liquid in the diagram
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!