Time=50s
speed=25m/s
Distance = speed×time
=25×50
=1250m
DISTANCE TRAVELLED IS =1250m
The light will bend when in
Option c) 1.5 V
Explanation:
<em>As the circuit is build in series first we will find the current passing through the complete circuit. Current stays the same in each element is the series cirucuit, however, the voltage is different.</em>
Voltage is given by the following formula:
V = IR
<em>Because we have to find current through whole circuit, we will first find resistance of the whole circuit.</em>
Equivalent Resistance R(eq): R1 + R2 = 60 + 60 = 120 ohm
Current passing through whole circuit be:
= 0.025
Now we will find out the voltage between C and D:
Current stays the same in series circuit: I = 0.025 c
Resistance between C and D is, R = 60 ohm
Voltage becomes, V = IR = 0.025 * 60 = 1.5 V
Add the KE increase and the work done against friction.
The final velocity is twice the average, or 3.0 m/s
The final KE is (1/2)*25*3^2 = 112.5 J
The friction work done is 6*3.8 = 22.8 J
hope this is correct
Answer:
(A) 2.4 N-m
(B) 
(C) 315.426 rad/sec
(D) 1741.13 J
(E) 725.481 rad
Explanation:
We have given mass of the disk m = 4.9 kg
Radius r = 0.12 m, that is distance = 0.12 m
Force F = 20 N
(a) Torque is equal to product of force and distance
So torque
, here F is force and r is distance
So 
(B) Moment of inertia is equal to 
So 
Torque is equal to 
So angular acceleration 
(C) As the disk starts from rest
So initial angular speed 
Time t = 4.6 sec
From first equation of motion we know that 
So 
(D) Kinetic energy is equal to 
(E) From second equation of motion
