Answer: 581 gmol
0.581 kmol

Explanation:
According to avogadro's law, 1 mole of every substance occupies 22.4 L at STP and contains avogadro's number
of particles.
To calculate the moles, we use the equation:

1. The conversion for mol to gmol
1 mol = 1 gmol
581 mol= 
2. The conversion for mol to kmol
1 mol = 0.001 kmol
581 mol= 
3. The conversion for mol to lbmol
1 mol = 
581 mol= 
Answer:
this is a required answer. look it once.
<u>Answer:</u> The volume when the pressure and temperature has changed is 
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
Let us assume:
![P_1=1.20atm\\V_1=795mL\\T_1=116^oC=[116+273]K=389K\\P_2=0.55atm\\V_2=?mL\\T_2=75^oC=[75+273]K=348K](https://tex.z-dn.net/?f=P_1%3D1.20atm%5C%5CV_1%3D795mL%5C%5CT_1%3D116%5EoC%3D%5B116%2B273%5DK%3D389K%5C%5CP_2%3D0.55atm%5C%5CV_2%3D%3FmL%5C%5CT_2%3D75%5EoC%3D%5B75%2B273%5DK%3D348K)
Putting values in above equation, we get:

Hence, the volume when the pressure and temperature has changed is 
Answer:
False
Explanation:
While chemical reactions can proceed in the forward direction , they can in fact also proceed in the backward direction too. The direction they would proceed depends majorly on the state of chemical equilibrium at that particular time for that particular chemical reaction.
It should be known that when a chemical reaction proceeds in the forward way, more products are formed and the reactants are used up. If however, the chemical reaction proceed in the backward way, more reactants are formed and the products are used up.
A practical example is in the case of an exothermic reaction. This is one in which heat is released to the surroundings as a result of the reactants being at a higer energy level compared to the product. Now, depending on the prevailing equilibrium constraint, the reaction could proceed forward or backward.
If for example, the temperature is decreased, this is a constraint being applied to the equilibrium state. The chemical reaction would take a shift and will favor the forward reaction and more of the products will be formed. And also of the temperature is increased, it is the backward reaction that is favored