Answer: This is called the Doppler effect, where waves shift frequency and wavelength as the source travels towards you (higher frequency, shorter wavelength) or away from you (lower frequency, longer wavelength)
Explanation:
hoped this helped have a good day :)
Answer:
The period of rotation is
T=8.025s
Explanation:
The person is undergoing simple harmonic motion on the wheel
Given data
mass of the person =75kg
Radius of wheel r=16m
Velocity =8.25m/s
The oscillating period of simple harmonic motion is given as
T=(2*pi)/2=2*pi √r/g
Assuming that g=9.81m/s
Substituting our data into the expression we have
T=2*3.142 √ 16/9.81
T=6.284*1.277
T=8.025s
Answer:
<em>Explanation below</em>
Explanation:
<u>Speed vs Velocity
</u>
These are two similar physical concepts. They only differ in the fact that the velocity is vectorial, i.e. having magnitude and direction, and the speed is scalar, just the magnitude regardless of the direction. They are strongly related to the concepts of displacement and distance, which are the vectorial and scalar versions of the space traveled by a moving object. The velocity can be computed as

Where
is the position vector and t is the time. The speed is

To compute
, we only need to know the initial and final positions and subtract them. To compute d, we need to add all the distances traveled by the object, regardless of their directions.
Maggie walks to a friend's house, located 1500 meters from her place. The initial position is 0 and the final position is 1500 m. The displacement is

and the velocity is

Now, we know Maggie had to make three different turns of direction to finally get there. This means her distance is more than 1500 m. Let's say she walked 500 m in all the turns, then the distance is

If she took the same time to reach her destiny, she would have to run faster, because her average speed is

Divide
(the distance covered in some period of time)
by
(the time taken to cover the distance).
The quotient is the average speed during that period of time.