Fossil fuel emissions can create acid rain, which in turn increases the pH of ocean water, harming the organisms in the ocean.<span />
Answer:
no se amigo esquema no entiendo ingles
Answer:
A.
Explanation:
Using the ideal gas equation, we can calculate the number of moles present. I.e
PV = nRT
Since all the parameters are equal for both gases, we can simply deduce that both has the same number of moles of gases.
The relationship between the mass of each sample and the number of moles can be seen in the relation below :
mass in grammes = molar mass in g/mol × number of moles.
Now , we have established that both have the same number of moles. For them to have the same mass, they must have the same molar masses which is not possible.
Hence option A is wrong
I think the correct answer from the choices listed above is option D. Outer planets are mostly made up of gases and are huge in size. These gases are hydrogen and helium. <span>These outer planets are Saturn, Jupiter, Uranus, and Neptune. Hope this answers the question.</span>
Answer:
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + 2KNO₃
Step-by-step explanation:
The unbalanced equation is
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + KNO₃
Notice that the complex groups like NO₃ and CrO₄ stay the same on each side of the equation.
One way to simplify the balancing is to replace them with a single letter.
(a) For example, let <em>X = NO₃</em> and <em>Y =CrO₄</em>. Then, the equation becomes
PbX₂ + K₂Y ⟶ PbY + KX
(b) You need 2X on the right, so put a 2 in front of KX.
PbX₂ + K₂Y ⟶ PbY + 2KX
(c) Everything is balanced. Now, replace X and Y with their original meanings. The balanced equation is
Pb(NO₃)₂ + K₂CrO₄ ⟶ PbCrO₄ + 2KNO₃