The answer is D because inherited is in the genes and enviornment is what happens around you
The temperature of the countertop changes by 0.032 °C
The quantity of heat transferred to the countertop is given by
Q = CΔT where Q = quantity of heat transferred to the countertop = 5000 J = 5 kJ, C = heat capacity of the countertop = 158.5 kJ/°C and ΔT = temperature change of the countertop.
Since we require the temperature change of the countertop, we make ΔT subject of the formula.
So, ΔT = Q/C
So, substituting the values of the variables into the equation, we have
ΔT = Q/C
ΔT = 5 kJ/158.5 kJ/°C
ΔT = 0.032 °C
So, the temperature of the countertop changes by 0.032 °C
Learn more about temperature change here:
brainly.com/question/16384350
AH1 = m * c1 * AT1 calculate this for ice (-25C to 0C) AH2 = AHfus(1 mole)=6.01 kJ = 6010 J AH3 = m *c3 * AT3 calculat this for water (0C to 100C) AH4 = AHvap(1mole)=40.67 kJ = 40670 J AH5= m * c5 * AT5 calculate this for steam (100C to 125C)
Sum ---- AH1+AH2+AH3+AH4+AH5
Data m=18g (1mole water)
c1=specific heat ice= 2.09 J/g K c3=specific heat water= 4.18 J/g K c5=specific heat steam= 1.84 J/g K
AT = (Tend - Tinitial) as this is a difference between temperatures it doesn't matter the units Celsius or Kelvin. Kelvin (K)=Celsius (C)+273.15
AT1 = 0C - (-25C)= 25C= 273.15K - 248.15K= 25K AT3= 100C - 0C = 100C= 100K AT5= 125C - 100C= 25C=25K
Answer:
Electrons get farther from the nucleus.
Explanation:
By going from the top to the bottom of a group, the atomic number increases. That would mean that:
- The number of orbitals increases, as there are more electrons.
- A higher atomic number implies an increasing number of neutrons.
- As there are more electrons, they get farther from the nucleus. The farther an electron is from the nucleus, the easier it is for the electron to be removed from the atom.
Molarity refers to moles/ L. This indicates the concentration of a solution containing solute and solvent.
1 molar solution contains 1 mole of solute in 1 L of solvent.
According to Avogadro's number, 1 mole of a substance contains 6.023 x 10^23 molecules, atoms, or ions.
For this reason, 6.023 x 10^23 atoms, ions, or molecules are in a molar solution.