Answer:
88.98 %.
Explanation:
- From the balanced equation:
<em>2HCl + Pb(NO₃)₂ → 2HNO₃ + PbCl₂</em>
- It is clear that 1.0 mole of Pb(NO₃)₂ reacts with 2.0 moles of HCl to produce 1.0 mole of PbCl₂ and 2.0 moles of HNO₃.
- <em>The percent yield % of lead(II) chloride (PbCl₂) = [(actual yield) / (calculated yield)] x 100.</em>
- The actual yield of lead(II) chloride (PbCl₂) = 650 g.
- Now, we need to calculate the calculated yield of lead(II) chloride (PbCl₂).
- We need to calculate the no. of moles (n) of lead(II) nitrate (Pb(NO₃)₂) (870 grams) using the relation: <em>n = mass / molar mass.</em>
- n of lead(II) nitrate (Pb(NO₃)₂) = mass / molar mass = (870 g) / (331.2 g/mol) = 2.63 mol.
- Since HCl is in excess, the limiting reactant is lead(II) nitrate (Pb(NO₃)₂).
<u><em>Using cross multiplication:</em></u>
1.0 mole of Pb(NO₃)₂ produces → 1.0 mole of PbCl₂, from the stichiometry.
∴ 2.63 mole of Pb(NO₃)₂ produces → 2.63 mole of PbCl₂.
- The mass of PbCl₂ produced (the calculated yield) = n x molar mass = (2.63 mol) (278.1 g/mol) = 730.52 g.
∴ The percent yield % of lead(II) chloride (PbCl₂) = [(actual yield) / (calculated yield)] x 100 = [(650 g) / (730.52)] x 100 = 88.98 %.
Answer:
2.35 x 10²³atoms
Explanation:
Given parameters:
Number of moles of Be = 0.39moles
Unknown:
Number of atoms = ?
Solution:
To solve this problem:
1 mole of a substance contains 6.02 x 10²³ atoms
0.39 mole of Be will contain 0.39 x 6.02 x 10²³ = 2.35 x 10²³atoms
Answer:
2FeBr3 + 3Na2S ➡️ Fe2S3 + 6NaBr
The number of moles in a substance indicates the amount of the substance that contains the same number of particles as 12 g of the Carbon-12 isotope [or equivalent to 6.02 × 10²³] (which is used as a standard in the world of moles).
Now,
if 6.02 × 10²³ atoms are found in 1 mole ofsodium
then let 9.76 × 10¹² atoms are found in x
⇒ x = (9.76 × 10¹² ) ÷ (6.02 × 10²³)
= 1.619 × 10⁻¹¹ mol
Now, mass = moles × molar mass
∴ mass of Na = 1.619 × 10⁻¹¹ mol × 23 g/mol
= 3.72 × 10⁻¹⁰ g
A large atom means that the radius would be large, meaning that the effective nuclear charge is low, therefore a lower electronegativity based on the periodic table. A smaller atom would mean the opposite, therefore a higher electronegativity. This combination would mean that the new molecule is polar.
Also, to answer your question, it would be most likely different from both atoms, as size doesn't really matter in a compound's properties.