Answer:
Explanation:
Firstly, we have to determine the mass of metal X. We can do that by interpreting the first and second statement mathematically.
Metal X can form 2 oxides (A and B).
A + B = 3g
The mass of oxygen in A is 0.72g and the mass of oxygen in B is 1.16g.
The mass of metal X in the two oxides will be the same because it's the same metal.
Thus, we represent the mass of the metal in the two oxides as 2X.
2X + 0.72 + 1.16 = 3
2X + 1.88 = 3
2X = 3 - 1.88
2X = 1.12
X = 0.56
<u>Thus, 0.56 g of the metal combines with 0.72g of oxygen in A and 1.16 g of oxygen in B.</u>
Thus, mass of metal (X) in 1g of oxygen in A is
0.56g ⇒ 0.72g
X ⇒ 1
X = 1 × 0.56/0.72
X = 0.78 g
Hence, 0.78g of the metal will combine with 1g of oxygen for A
Also, mass of metal (X) in 1g of oxygen in B is
0.56g ⇒ 1.16g
X ⇒ 1g
X = 1×0.56/1.16
X = 0.48 g
Thus, 0.48g of the metal will combine with 1g of oxygen for B
Answer:
3.1 x 10⁻²¹ Nm
Explanation:
When placed in an external electric filed, an electric dipole experiences a torque. and this torque is represented mathematically with the equation:
torque (τ) = dipole moment vector (P) x electric field vector (E)
τ = P. E . sin θ
where θ is the angle between the water molecule and the electric field, which in this case is 90° (because this is where the torque is maximum)
τ = 6.2x10⁻³⁰Cm . 5.0x10⁸ N/C . sin90
τ = 6.2x10⁻³⁰Cm . 5.0x10⁸ N/C . 1
solve for τ
τ = 3.1 x 10⁻²¹ Nm
the maximum possible torque on the water molecule is therefore 3.1 x 10⁻²¹ Nm
Given:
volume of 0.08 m³
density of 7,840 kg/m³
Required:
force of gravity
Solution:
Find the mass using density
equation.
D = M/V
M = DV
M = (7,840 kg/m³)(0.08 m³)
M = 627.2kg
F = Mg
F = (627.2kg)(9.8m/s2)
F = 6147N
155,500
I did this to the best of my ability. I have a hard time comprehending things sometimes so I’m so so so sorry if it’s wrong