Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:

Answer:
vapor fraction = 0.4 and 0.08
Explanation:
At reasonably high temperatures, a mixture will exist in the form of a sub cooled liquid. Between these extremes, the mixture exists in a two phrase region where it is a vapor liquid equilibrium. From a vapor-liquid phase diagram, a mixture of 40% A, 39% B, and 21% C separates to give the vapor compositions of 0.4 and 0.08.
Answer:
The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3
Heat flux is 9.67×10^7 Btu/hrft^2
Explanation:
Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr
Area (A) = πD^2/4
Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft
A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2
Volume (V) = A × Length
L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft
V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3
Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3
Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2
“Thinking about pleasant things to pass the time” would not promote safety in the shop because it would be taking the focus away from important tasks, which in turn decreases safety.
Answer: Because if something goes wrong while you are flying it it will crash
Explanation: