Answer:
I think It's C
Explanation:
due to higher waves can get easy transfers and receive those signals for most things, such as radios, TVs, phone signals etc etc
Answer:
Hey mate.....
Explanation:
This is ur answer.....
<em>Volcanoes are closely associated with plate tectonic activity. Most volcanoes, such as those of Japan and Iceland, occur on the margins of the enormous solid rocky plates that make up Earth's </em><em>surface.</em>
Hope it helps!
Brainliest pls....
Follow me! ;)
<span>The Lewis structure for CO has 10 valence electrons. For the CO Lewis structure you'll need a triple bond between the Carbon and Oxygen atoms in order to satisfy the octets of each atom while still using the 10 valence electrons available for the CO molecule.</span>
Answer:
Explanation:
From the periodic table, the element designated as Sn is tin. Sn is derieved from a latin name of the metal called Stanum
Selenium Se is a group 6 element. It belongs to the same group with oxygen, sulfur and tellurium. This substance has an atomic weight of 78.96g/mol
Oxygen is a group 6 element with an atomic mass of 16. The atomic mass is the number of protons in the nucleus of this atom.
Answer:
a. Cyclohexanone
Explanation:
The principle of IR technique is based on the <u>vibration of the bonds</u> by using the energy that is in this region of the electromagnetic spectrum. For each bond, there is <em>a specific energy that generates a specific vibration</em>. In this case, you want to study the vibration that is given in the carbonyl group C=O. Which is located around 1700 cm-1.
Now, we must remember that the <u>lower the wavenumber we will have less energy</u>. So, what we should look for in these molecules, is a carbonyl group in which less energy is needed to vibrate since we look for the molecule with a smaller wavenumber.
If we look at the structure of all the molecules we will find that in the last three we have <u>heteroatoms</u> (atoms different to carbon I hydrogen) on the right side of the carbonyl group. These atoms allow the production of <u>resonance structures</u> which makes the molecule more stable. If the molecule is more stable we will need more energy to make it vibrate and therefore greater wavenumbers.
The molecule that fulfills this condition is the <u>cyclohexanone.</u>
See figure 1
I hope it helps!