Given,
A player kicks a soccer hits at an angle of 30° at a speed of 26 m/s
We can resolute the trajectory of soccer into horizontal and vertical components.(Please see the attached file)
We can have,
Horizontal velocity component of ball= 26cos(30°) = 26×(√3÷2) = 22.51 m/s
And vertical velocity component of ball = 26sin(26°) = 26×(1÷2) = 13 m/s
Answer:
Friction
Explanation:
Friction is a force that slows down moving objects. If you roll a ball across a shaggy rug, you can see that there are lumps and bumps in the rug that make the ball slow down. The rubbing, or friction, between the ball and the rug is what makes the ball stop rolling. External Force is required.
Answer:
If the rifle is held loosely away from the shoulder, the recoil velocity will be of -8.5 m/s, and the kinetic energy the rifle gains will be 81.28 J.
Explanation:
By momentum conservation, <em>and given the bullit and the recoil are in a straight line</em>, the momentum analysis will be <em>unidimentional</em>. As the initial momentum is equal to zero (the masses are at rest), we have that the final momentum equals zero, so

now we clear
and use the given data to get that

<em>But we have to keep in mind that the bullit accelerate from rest to a speed of 425 m/s</em>, then <u>if the rifle were against the shoulder, the recoil velocity would be a fraction of the result obtained</u>, but, as the gun is a few centimeters away from the shoulder, it is assumed that the bullit get to its final velocity, so the kick of the gun, gets to its final velocity
too.
Finally, using
we calculate the kinetic energy as

Answer:
Inertia
Explanation:
Inertia is best defined as the ability of an object to resist a change in position or movement. That is why when an object has a higher mass, the higher the inertia. Imagine an oncoming truck that is fully loaded versus you. The tendency for the truck to change its movement would be difficult because of its its mass. It has a lot of inertia.
The total gauge pressure at the bottom of the cylinder would
simply be the sum of the pressure exerted by water and pressure exerted by the
oil.
The formula for calculating pressure in a column is:
P = ρ g h
Where,
P = gauge pressure
ρ = density of the liquid
g = gravitational acceleration
h = height of liquid
Adding the two pressures will give the total:
P total = (ρ g h)_water + (ρ g h)_oil
P total = (1000 kg / m^3) (9.8 m / s^2) (0.30 m) + (900 kg /
m^3) (9.8 m / s^2) (0.4 - 0.30 m)
P total = 2940 Pa + 882 Pa
P total = 3,822 Pa
Answer:
The total gauge
pressure at the bottom is 3,822 Pa.