1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
anyanavicka [17]
3 years ago
7

Which of the following is not a result of deforestation?

Physics
2 answers:
klemol [59]3 years ago
5 0

Answer:

B

Explanation:

enot [183]3 years ago
4 0
A because trees take in carbon dioxide and put oxygen so without them they wouldn’t be able to remove it.
You might be interested in
As 390 g of hot milk cools in a mug it transfers 30 000 j of heat to the environment. whats is the temperature change of the mil
Fed [463]
You have to use the specific heat equation. 

Q = cmΔT where Q is the energy, c is specific heat, m is mass, and ΔT is change in temp.

So we can substitute our variables into the equation.

30000J = (390g)(3.9J*g/C)ΔT

Solving for ΔT, we get:

30000J/[(390g)*(3.9J*g/C) = ΔT

ΔT = 19.72386588C

I'm assuming the temperature is C, since it was not specified.

Hope this helps!
8 0
3 years ago
How much heat is absorbed by a 71g iron skillet when its temperature rises from 11oC to 29oC?
diamong [38]
The right formula to use for this calculation is the heat capacity formula, 
Heat absorbed, Q = MCT, Where 
M = Mass of the substance = 71
C = Specific heat capacity for iron = 0.450 J/gc
T = Change in temperature = 29 - 11 = 18
Q = 71 * 0.450 *18 = 575.10
The amount of heat absorbed by the iron skillet is 575 J.
5 0
3 years ago
A 5 kg wooden block sitson a flat straight-away12 meters fromthe bottom of an infinitely long ramp, which has an angle of 20 deg
saveliy_v [14]

Answer:

(a) 19.71801m/s Velocity just before going up the ramp.

(b) 74.56338m.

Explanation:

We will solve it in two parts, first we will calculate time that 5kg wooden block would take to just reach ramp and with this time we will calculate final velocity that the wooden block would have in this time.

Second, we will calculate the component of velocity vector along inclined plane and the time that it would take for velocity to be 0 meters/s then with this time we will calculate the distance that inclined plane would travel along inclined plane.

Following formulas will be used.

                                  x(t) = \frac{1}{2} t^2 = 12m =16.2m/s^2 t^2

                                 F =ma

                                 V(t) = V_{o} +at

                                 x(t) = x_{0} +v_{0}t+\frac{1}{2}a t^2

(a) Calculating velocity right before going up the ramp.

 Wooden block is going on a straightaway and has net for on it.

         F_{n} =F-F_{s} = F-uF_{n}  = 100N-0.4*9.8m/s^2*5kg =81N

     and this force produces acceleration of

      a = \frac{F}{m}=\frac{81}{5} =16.2m/s^2 .

With this acceleration, wooden block would reach at the foot of ramp in.

          x(t) = 12m = 16.2m/s^2*t^2

         t = 1.217s

and final velocity will be

v(t) = v_{0}+at = 0+16.2m/s^2*1.2171s = 19.7180m/s.

this velocity of wooden box just before going up the ramp.

(b) How far up the ramp will the wooden block go before stopping.

Ramp is at 20° relative to horizontal therefore velocity along the ramp that the wooden block would have will be.

                              V= V_{h}cos(20) = 18.5288m/s

and deceleration along the ramp is

                              a = \frac{F_{s} }{m}

 Where F_{s} force of friction along the inclined plane.

F_s =  uF_n = u*m*a

a = 9.8m/s^2*cos(20) = 9.2089m/s^2

is a component of g along normal of the inclined plane.

                               F_{s} = 0.25*5kg*9.2089m/s^2

                              = 11.5112N

                              a = \frac{11.5112N}{5kg} = 2.3022m/s^2

And with this deceleration time needed to get wooded block to stop is.

                     v(t) = v_o-at = 18.5288m/s-2.3022m/s^2*t = 0

                        t = \frac{18.5288m/s}{2.3022m/s^2} =8.04813s

 and in that time wooden block would travel

   x(8.04813s) = 18.52881m/s *8.04813s-\frac{1}{} 2.3022m/s^2*(8.0481)^2=74.56338m

This is how up wooden box will go before coming to stop.

3 0
3 years ago
A 1000 kg race car rounds a curve with a radius of 50 m.
Kruka [31]

Answer:

5644556677888777766554433

5 0
2 years ago
A brick lands 10.1 m from the base of a building. If it was given an initial velocity of 8.6 m/s [61º above the horizontal], how
Montano1993 [528]
<h2>Answer: 10.52m</h2><h2 />

First, we have to establish the <u>reference system</u>. Let's assume that the building is on the negative y-axis and that the brick was thrown at the origin (see figure attached).

According to this, the initial velocity V_{o} has two components, because the brick was thrown at an angle \alpha=61\º:

V_{ox}=V_{o}cos\alpha   (1)

V_{ox}=8.6\frac{m}{s}cos(61\º)=4.169\frac{m}{s}  (2)

V_{oy}=V_{o}sin\alpha   (3)

V_{oy}=8.6\frac{m}{s}sin(61\º)=7.521\frac{m}{s}   (4)

As this is a projectile motion, we have two principal equations related:

<h2>In the x-axis: </h2>

X=V_{ox}.t  (5)

Where:

X=10.1m is the distance where the brick landed

t is the time in seconds

If we already know X and V_{ox}, we have to find the time (we will need it for the following equation):

t= \frac{X}{ V_{ox}}  (6)

t=2.42s  (7)

<h2>In the y-axis: </h2>

-y=V_{oy}.t+\frac{1}{2}g.t^{2}   (8)

Where:

y is the height of the building (<u>in this case it has a negative sign because of the reference system we chose)</u>

g=-9.8\frac{m}{s^{2}} is the acceleration due gravity

Substituting the known values, including the time we found on equation (7) in equation (8), we will find the height of the building:

-y=(7.521\frac{m}{s})(2.42s)+\frac{1}{2}(-9.8\frac{m}{s^{2}}).(2.42s)^{2}   (9)

-y=-10.52m   (10)

Multiplying by -1 each side of the equation:

y=10.52m >>>>This is the height of the building

3 0
3 years ago
Other questions:
  • PLEASE HELP ASAPPP
    15·1 answer
  • How does sound travel?
    8·2 answers
  • A particular baseball pitcher throws a baseball at a speed of 39.1 m/s (about 87.5 mi/hr) toward home plate. We use g = 9.8 m/s2
    13·1 answer
  • Imagine two people standing at placemark A and placemark E, looking at each other across the fault. Which of the following state
    7·1 answer
  • When a pitcher throws a softball to a catcher, the vibration of the atoms that make up the softball is ____________ energy, whil
    14·1 answer
  • One day in second grade, Chris drank chocolate milk before recess. She then played hard during recess and got sick from the heat
    9·2 answers
  • Which wave has a higher frequency than microwaves but lower frequency than UV waves?
    10·1 answer
  • An object is 1.0 cm tall and its inverted image is 4.0 cm tall. what is the exact magnification
    10·1 answer
  • a body of radius R and mass m is rolling horizontally without slipping with speed v. it then rolls us a hill to a maximum height
    14·1 answer
  • Work is best described as?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!