Answer:
a)1500N
b)153.06kg
Explanation:
F = ma
g(moon) = is the acceleration due to gravity on the moon
g(earth) is the acceleration due to gravity on the earth
g(moon) = 1/6g(earth)
g(earth) =6g(moon)
F(gearth) = mg(earth)
= m 6g(moon)
= 6 × 250
= 1500N
b) F(gearth) = mg(earth)
m = F /g
= 1500/9.8
= 153.06kg
Answer:
thankkkkkksssssssssssssss
The velocity of the object is zero (the object is at rest)
Explanation:
A position vs time graph represents the motion of an object; in particular:
- The position of the object x(t) is represented on the y-axis
- The time t is represented on the x-axis
For a position-time graph, the slope of the graph is given by

where
is the change in position
is the change in time
However, we see that this is equivalent to the definition of velocity:

Therefore, the slope of a position-time graph is equivalent to the velocity of the object.
And so, a horizontal segment on a position vs time graph means that the object has zero velocity (because the slope is zero).
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
Electrons accelerated to high velocities travel in straight lines through an empty cathode ray tube and strike the glass wall of the tube, causing excited atoms to fluoresce or glow.
Answer:
An apple in free fall accelerates toward the Earth with a free fall acceleration, g. The force of the apple on the Earth also causes the Earth to accelerate toward the falling apple. By Newton's Third Law, the force of the Earth on the apple is exactly equal and opposite to the force of the apple on the Earth. By Newton,s Second law, the force of the Earth on the apple is equal to the mass of the apple times g , the accelerations due to gravity. And, the force of the the apple on the Earth is equal to the mass of the Earth times the acceleration of the Earth toward the apple. In conclusion, the magnitude of the forces are equal, or
F ( apple on the Earth) = F( the Earth on the apple) or
M( mass of the earth) x a( the acceleration of the earth toward the apple) = m(mass of the apple) x g( the acceleration of the apple toward the Earth) or
a = (m/M) g
Explanation: