A - the objects are too small
GRAVITATIONAL FORCE IS EXPERIENCED BY ALL OBJECTS IN THE UNIVERSE ALL THE TIME. BUT THE ORDINARY OBJECTS YOU SEE EVERY DAY HAVE MASSES SO SMALL THAT THEIR ATTRACTION TOWARD EACH OTHER IS HARD TO DETECT. -https://www.ftsd.org/cms/lib6/MT01001165/Centricity/ModuleInstance/630/CHAPTER_2_NOTES_FOR_EIGHTH_GRADE_PHYSICAL_SCIENCE.pdf
They stay with the microscope as it moves around to different schools, and they are always located in the same classroom where the rest of the microscope is being used.
Answer:
6.67 ohm
Explanation:
From the question given above, the following data were obtained:
Resistor 1 (R₁) =20 ohm
Resistor 2 (R₂) = 20 ohm
Resistor 3 (R₃) = 20 ohm
Equivalent Resistance (R) =?
Since the resistors are arranged in parallel connection, the equivalent resistance can be obtained as follow:
1/R = 1/R₁ + 1/R₂ + 1/R₃
1/R = 1/20 + 1/20 + 1/20
1/R = (1 + 1 + 1) / 20
1/R = 3/20
Invert
R = 20/3
R = 6.67 ohm
Therefore, the equivalent resistance is 6.67 ohm.
Here are the answers to the question. Make sure to give a valid reason, please.
A. the sum of the protons and neutrons in one atom of the element.
B. a ratio based on the mass of a carbon-12 atom.
C. a weighted average of the masses of an element's isotopes.
D. twice the number of protons in one atom of the element.